

Cynthia Vodopivec Dynegy Zimmer, LLC Luminant 6555 Sierra Dr. Irving, TX 75039

September 29, 2020

Sent via email

Mr. Andrew R. Wheeler, EPA Administrator Environmental Protection Agency 1200 Pennsylvania Avenue, N.W. Mail Code 5304-P Washington, DC 20460

Re: Zimmer Power Station Alternative Closure Demonstration

Dear Administrator Wheeler:

Dynegy Zimmer, LLC (Dynegy) hereby submits this request to the U.S. Environmental Protection Agency (EPA) for approval for a site-specific alternative deadline to initiate closure pursuant to 40 C.F.R. § 257.103(f)(1) for the three CCR surface impoundments (Coal Pile Runoff Pond, Gypsum Recycle Pond, and D Basin) located at the Zimmer Power Station near Moscow, Ohio. Dynegy is requesting an extension pursuant to 40 C.F.R. § 257.103(f)(1) to allow the three impoundments to continue to receive CCR and non-CCR wastestreams after April 11, 2021, in order to retrofit the Coal Pile Runoff Pond, reroute CCR wastestreams away from the Gypsum Recycle Pond to the Mercury Effluent Treatment System, close the Gypsum Recycle Pond and repurpose as a non-CCR basin, and initiate closure of D Basin. The Coal Pile Runoff Pond and Gypsum Recycle Pond are eligible unlined CCR surface impoundments as defined under 40 C.F.R. § 257.53.

Enclosed is a demonstration prepared by Burns & McDonnell that addresses all of the criteria in 40 C.F.R. § 257.103(f)(1)(i)-(iii) and contains the documentation required by 40 C.F.R. § 257.103(f)(1)(iv). As allowed by the agency, in lieu of hard copies of these documents, electronic files were submitted to Kirsten Hillyer, Frank Behan, and Richard Huggins via email. If you have any questions regarding this submittal, please contact Phil Morris at 618-343-7794 or phil.morris@vistracorp.com.

Sincerely,

Cynthin E ubdy

Cynthia Vodopivec VP - Environmental Health & Safety

Enclosure

cc: Kirsten Hillyer Frank Behan Richard Huggins

Zimmer CCR Surface Impoundments Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Dynegy Zimmer, LLC

William H. Zimmer Power Station Project No. 122702

> Revision 0 September 28, 2020

Zimmer CCR Surface Impoundments Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

Prepared for

Dynegy Zimmer, LLC William H. Zimmer Power Station Project No. 122702

Moscow, Ohio

Revision 0 September 28, 2020

Prepared by

Burns & McDonnell Engineering Company, Inc. Kansas City, Missouri

INDEX AND CERTIFICATION

Dynegy Zimmer, LLC Zimmer CCR Surface Impoundments Demonstration for a Site-Specific Alternative to Initiation of Closure Deadline

	Report Index	
<u>Chapter</u> Number	Chapter Title	<u>Number</u> of Pages
1.0	Introduction	3
2.0	Workplan	15
4.0	Conclusion	1
Appendix A	Site Plan and Water Balance Diagram	2
Appendix B	Schedule	2

Certification

I hereby certify, as a Professional Engineer in the state of Ohio, that the information in this document as noted in the above Report Index was assembled under my direct personal charge. This report is not intended or represented to be suitable for reuse by the Dynegy Zimmer, LLC or others without specific verification or adaptation by the Engineer.

Matthew D. Bleything, P.E. Ohio License No. 82440

4, 17,07,0 Date:

TABLE OF CONTENTS

Page No.

1.0	INIR	ODUCTION	1-1
2.0	WOF	KPLAN	2-1
	2.1	No Alternative Disposal Capacity and Approach to Obtain Alternative	
		Capacity - § 257.103(f)(1)(iv)(A)(1)	2-1
		2.1.1 CCR Wastestreams	2-2
		2.1.2 Non-CCR Wastestreams	2-3
		2.1.3 Site-Specific Conditions Supporting Alternative Capacity	
		Approach – § 257.103(f)(1)(iv)(A)(1)(i)	2-5
		2.1.5 Options Considered Both On and Off-Site to Obtain Alternative	
		Capacity	2-6
		2.1.6 Approach to Obtain Alternative Capacity	2-7
		2.1.7 Technical Infeasibility of Obtaining Alternative Capacity	2-10
		2.1.8 Justification for Time Needed to Complete Development of	
		Alternative Capacity Approach – § 257.103(f)(1)(iv)(A)(1)(iii)	2-10
	2.2	Detailed Schedule to Obtain Alternative Disposal Capacity -	
		§ 257.103(f)(1)(iv)(A)(2)	2-11
	2.3	Narrative of Schedule and Visual Timeline - § 257.103(f)(1)(iv)(A)(3)	2-11
	2.4	Progress Towards Obtaining Alternative Capacity -	
		§ 257.103(f)(1)(iv)(A)(4)	2-15
3.0	DOC	UMENTATION AND CERTIFICATION OF COMPLIANCE	3-1
	3.1	Owner's Certification of Compliance - § 257.103(f)(1)(iv)(B)(1)	3-1
	3.2	Visual Representation of Hydrogeologic Information -	
		§ 257.103(f)(1)(iv)(B)(2)	3-1
	3.3	Groundwater Monitoring Results - § 257.103(f)(1)(iv)(B)(3)	3-2
	3.4	Description of Site Hydrogeology - § 257.103(f)(1)(iv)(B)(4)	3-2
	3.5	Corrective Measures Assessment - § 257.103(f)(1)(iv)(B)(5)	3-2
	3.6	Remedy Selection Progress Report - § 257.103(f)(1)(iv)(B)(6)	3-2
	3.7	Structural Stability Assessment - § 257.103(f)(1)(iv)(B)(7)	3-2
	3.8	Safety Factor Assessment - § 257.103(f)(1)(iv)(B)(8)	3-2
4.0	CON	CLUSION	4-1

APPENDIX A – SITE PLAN AND WATER BALANCE DIAGRAM APPENDIX B – SCHEDULE APPENDIX C – COMPLIANCE DOCUMENTS

LIST OF TABLES

Page No.

Table 2-1: Zimmer CCR Surface Impoundment Summary	2-2
Table 2-2: Zimmer CCR Wastestreams	2-3
Table 2-3: Zimmer Gypsum Recycle Pond Non-CCR Wastestreams	2-4
Table 2-4: Zimmer Coal Pile Runoff Pond Non-CCR Wastestreams	2-4
Table 2-5: Alternatives for Disposal Capacity	2-6
Table 2-6: Retrofit Project Progress Milestones	2-10

LIST OF ABBREVIATIONS

Abbreviation	Term/Phrase/Name
CCR	Coal Combustion Residual
CFR	Code of Federal Regulations
СҮ	Cubic yards
Dynegy	Dynegy Zimmer, LLC
ELG	Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category
EPA	Environmental Protection Agency
FGD	Flue Gas Desulfurization
GCL	Geosynthetic Clay Liner
GWPS	Groundwater Protection Standards
HDPE	High Density Polyethylene
RCRA	Resource Conservation and Recovery Act
SAP	Sampling and Analysis Plan
SSI(s)	Statistically Significant Increases
SSL(s)	Statistically Significant Levels
Zimmer	William H. Zimmer Power Station

i

1.0 INTRODUCTION

On April 17, 2015, the Environmental Protection Agency (EPA) issued the federal Coal Combustion Residual (CCR) Rule, 40 C.F.R. Part 257, Subpart D, to regulate the disposal of CCR materials generated at coal-fueled electric generating units. The rule is being administered under Subtitle D of the Resource Conservation and Recovery Act (RCRA, 42 U.S.C. § 6901 *et seq.*).

On August 28, 2020, the EPA Administrator issued revisions to the CCR Rule that require all unlined surface impoundments to cease receipt of CCR and non-CCR waste and initiate closure by April 11, 2021, unless an alternative deadline is requested and approved. 40 C.F.R. § 257.101(a)(1), (b)(1) (85 Fed. Reg. 53,516 (Aug. 28, 2020)). Specifically, owners and operators of a CCR surface impoundment may seek and obtain an alternative closure deadline by demonstrating that there is currently no alternative capacity available on or off-site and that it is not technically feasible to complete the development of alternative capacity prior to April 11, 2021. 40 C.F.R. § 257.103(f)(1). To make this demonstration, the facility is required to provide detailed information regarding the process the facility is undertaking to develop the alternative capacity. 40 C.F.R. § 257.103(f)(1). Any extensions granted cannot extend past October 15, 2023, except an extension can be granted until October 15, 2024, if the impoundment qualifies as an "eligible unlined CCR surface impoundment" as defined by the rule. 40 C.F.R. § 257.103(f)(1)(vi). Regardless of the maximum time allowed under the rule, EPA explains in the preamble to the Part A rule that each impoundment "must still cease receipt of waste as soon as feasible, and may only have the amount of time [the owner/operator] can demonstrate is genuinely necessary." 85 Fed. Reg. at 53,546.

This document serves as Dynegy's Demonstration for a site-specific alternative deadline to initiate retrofit or closure pursuant to 40 C.F.R. § 257.103(f)(1) for the CCR surface impoundments at the William H. Zimmer Power Station (Zimmer), located in Moscow, Ohio, which include the following:

- Gypsum Recycle Pond
- Coal Pile Runoff Pond
- D Basin

The Gypsum Recycle Pond and Coal Pile Runoff are "eligible unlined CCR surface impoundments" as defined under 40 C.F.R. § 257.53. To obtain an alternative closure deadline under 40 C.F.R. § 257.103(f)(1), a facility must meet the following three criteria:

1. § 257.103(f)(1)(i) - There is no alternative disposal capacity available on-site or off-site. An increase in costs or the inconvenience of existing capacity is not sufficient to support qualification;

- § 257.103(f)(1)(ii) Each CCR and/or non-CCR wastestream must continue to be managed in that CCR surface impoundment because it was technically infeasible to complete the measures necessary to obtain alternative disposal capacity either on or off-site of the facility by April 11, 2021; and
- 3. § 257.103(f)(1)(iii) The facility is in compliance with all the requirements of the CCR Rule.

To demonstrate that the first two criteria above have been met, 40 C.F.R. 257.103(f)(1)(iv)(A) requires the owner or operator to submit a work plan that contains the following elements:

• A written narrative discussing the options considered both on and off-site to obtain alternative capacity for each CCR and/or non-CCR wastestream, the technical infeasibility of obtaining alternative capacity prior to April 11, 2021, and the option selected and justification for the alternative capacity selected. The narrative must also include all of the following:

- An in-depth analysis of the site and any site-specific conditions that led to the decision to select the alternative capacity being developed;
- An analysis of the adverse impact to plant operations if the CCR surface impoundment in question were to no longer be available for use; and
- A detailed explanation and justification for the amount of time being requested and how it is the fastest technically feasible time to complete the development of the alternative capacity.
- A detailed schedule of the fastest technically feasible time to complete the measures necessary for alternate capacity to be available, including a visual timeline representation. The visual timeline must clearly show all of the following:
 - How each phase and the steps within that phase interact with or are dependent on each other and the other phases;
 - All of the steps and phases that can be completed concurrently;
 - The total time needed to obtain the alternative capacity and how long each phase and step within each phase will take; and
 - At a minimum, the following phases: engineering and design, contractor selection, equipment fabrication and delivery, construction, and start up and implementation.
- A narrative discussion of the schedule and visual timeline representation, which must discuss the following:
 - Why the length of time for each phase and step is needed and a discussion of the tasks that occur during the specific step;
 - Why each phase and step shown on the chart must happen in the order it is occurring;
 - The tasks that occur during each of the steps within the phase; and
 - Anticipated worker schedules.

• A narrative discussion of the progress the owner or operator has made to obtain alternative capacity for the CCR and/or non-CCR wastestreams. The narrative must discuss all the steps taken, starting from when the owner or operator initiated the design phase up to the steps occurring when the demonstration is being compiled. It must discuss where the facility currently is on the timeline and the efforts that are currently being undertaken to develop alternative capacity.

To demonstrate that the third criterion above has been met, 40 C.F.R. § 257.103(f)(1)(iv)(B) requires the owner or operator to submit the following information:

- A certification signed by the owner or operator that the facility is in compliance with all of the requirements of 40 C.F.R. Part 257, Subpart D;
- Visual representation of hydrogeologic information at and around the CCR unit(s) that supports the design, construction and installation of the groundwater monitoring system. This includes all of the following:
 - Map(s) of groundwater monitoring well locations in relation to the CCR unit(s);
 - Well construction diagrams and drilling logs for all groundwater monitoring wells; and
 - Maps that characterize the direction of groundwater flow accounting for seasonal variations.
- Constituent concentrations, summarized in table form, at each groundwater monitoring well monitored during each sampling event;
- A description of site hydrogeology including stratigraphic cross-sections;
- Any corrective measures assessment conducted as required at § 257.96;
- Any progress reports on corrective action remedy selection and design and the report of final remedy selection required at § 257.97(a);
- The most recent structural stability assessment required at § 257.73(d); and
- The most recent safety factor assessment required at § 257.73(e).

2.0 WORKPLAN

To demonstrate that the criteria in 40 C.F.R. § 257.103(f)(1)(i) and (ii) have been met, the following is a workplan, consisting of the elements required by § 257.103(f)(1)(iv)(A). Specifically, this workplan documents that there is no alternative capacity available on or off-site for each of the CCR and non-CCR wastestreams that Dynegy plans to continue to manage in the three surface impoundments and discusses the options considered for obtaining alternative disposal capacity. As discussed in more detail below, **Dynegy has elected to retrofit the Coal Pile Runoff Pond, reroute CCR wastestreams away from the Gypsum Recycle Pond to the Mercury Effluent Treatment System, close the Gypsum Recycle Pond and repurpose as a non-CCR basin, and initiate closure of D Basin. The workplan provides a detailed schedule for the retrofit project, including a narrative description of the schedule and an update on the progress already made toward obtaining the alternative capacity. In addition, the narrative includes an analysis of the site-specific conditions that led to the decision to retrofit impoundments and an analysis of the adverse impact to plant operations if Dynegy were no longer able to use the CCR surface impoundments.**

2.1 No Alternative Disposal Capacity and Approach to Obtain Alternative Capacity - § 257.103(f)(1)(iv)(A)(1)

Dynegy owns and operates Zimmer, a 1,450-megawatt coal-fired facility located in Moscow, Ohio. Zimmer has three CCR surface impoundments (listed in Table 2-1) that receive both CCR and non-CCR wastestreams. The other impoundments onsite (A Basin, B Basin, C Basin, Wastewater Pond and Clear Water Pond) are not authorized to receive CCR material and are not large enough to independently store and/or treat the total volume of the plant non-CCR wastestreams, and specifically coal pile runoff. An aerial view of the Zimmer site and the CCR surface impoundments can be found on Figure 1 in Appendix A, and the impoundments are also shown on the site water balance diagram on Figure 2 in Appendix A. Note, the Gypsum Recycle Pond (also referred to as the Truck Wash Pond) is denoted as the FGD Runoff Pond on the water balance.

CCR Surface Impoundment Name	Alternate Designation (see Figure 2)	Year Placed in Service	Impoundment Size (acres) / Storage Volume (acre-feet)	Lined?	Meets Location Restrictions?	Groundwater Status
Gypsum Recycle Pond	SPD-4 Pond-4 Truck Wash Pond	1995	0.6 / 4.5	Yes ¹	Yes	Assessment Monitoring was initiated in May 2018 and is
Coal Pile Runoff Pond	SPD-3 Pond-3 Coal Pile Runoff Pond	1987	2.8 / 36.3	Yes ¹	Yes	ongoing. No exceedances of Appendix IV parameters have been identified;
D Basin	SPD-5 Pond-5 D Basin Dredge Dewatering Basin	2003	6.1 / 46.6	No	No ²	therefore, an assessment of corrective measures is not required.

¹Originally classified as lined per 40 C.F.R. § 257.71(a)(1)(i), which was subsequently vacated by the U.S. Court of Appeals for the D.C. Circuit. This impoundment now qualifies as an eligible unlined CCR surface impoundment per § 257.53. ²Meets criteria for wetlands, fault areas, seismic impact zones, and unstable areas but not aquifer separation.

2.1.1 CCR Wastestreams

Dynegy evaluated each CCR wastestream placed in the Zimmer CCR surface impoundments. The existing site water balance is included in Appendix A of this demonstration (see Figure 2). The Zimmer fly ash, economizer ash, and gas recirculation ash systems are dry handled and disposed in the CCR landfill onsite. The bottom ash (and non-CCR pyrites) are sluiced to dewatering bins equipped with surge tanks and a recirculation system. After dewatering, the bottom ash is disposed in the CCR landfill onsite. For the reasons discussed below in Table 2-2, each of the following CCR wastestreams must continue to be placed in the CCR surface impoundments due to lack of alternative capacity both on and off-site.

|--|

CCR Wastestream	Average Flow (MGD)	Description	Dynegy Notes
FGD Wastewater	Intermittent	The FGD system utilizes a series of thickeners with rakes and centrifuges to remove suspended solids and a magnesium recovery process to remove dissolved solids from the effluent. The Gypsum Recycle Pond receives centrate centrifuge effluent, FGD blowdown that is not recycled back to the scrubber, and mag thickener overflow (FGD wastewater). This pond effluent is forwarded to the Mercury Effluent Treatment System via the FGD area sump. Coal Pile Runoff Pond receives treated flow (including CCR solids) from the Mercury Effluent Treatment System. D Basin is used to dewater dredged CCR and non-CCR material from other ponds onsite (including Gypsum Recycle Pond and Coal Pile Runoff Pond).	The Gypsum Recycle Pond is integral to operation of the FGD and captures large portions of the wet-generated CCR solids from the centrate/mag thickener system overflows and various wash activities before having the water forwarded to the Mercury Effluent Treatment System. The Coal Pile Runoff Pond receives both coal fines from non-CCR wastestreams (specifically coal pile runoff), the effluent from the Mercury Effluent Treatment System (including landfill leachate, FGD wastewater, and the CCR solids that settle out of the FGD wastewater. Based on the size of this impoundment, dredging (to D Basin) is required to remove CCR and non- CCR materials on a periodic basis to maintain the residence time and treatment capacity provided within the Coal Pile Runoff Pond. Adequate alternate treatment systems do not exist at the Zimmer site.

2.1.2 Non-CCR Wastestreams

Zimmer discharges non-contact cooling water, reclaim water, and cooling tower blowdown via Outfall 099, cooling tower overboard, sewage treatment plant, and south plant stormwater via Outfall 003, and sewage treatment flows and north plant stormwater via Outfall 004. The CCR surface impoundments, two other coal pile runoff ponds (A and B basins), a stormwater and river dredge pond (C Basin), and one low volume wastewater pond are used to manage all the remaining water process flows and stormwater on the plant site. These ponds are interconnected in series to allow for settling prior to overflowing to the Clear Water Pond for discharge to the Ohio River via Outfall 005. The existing site water balance is included in Appendix A of this demonstration (see Figure 2).

Dynegy evaluated each non-CCR wastestream placed in the Zimmer CCR surface impoundments. For the reasons discussed below in Table 2-3 and Table 2-4, each of the following non-CCR wastestreams must continue to be placed in the Gypsum Recycle Pond and Coal Pile Runoff Pond, respectively, due to lack of alternative capacity both on and off-site. The D Basin only receives wastestreams during dredging of other impoundments onsite.

Non-CCR Wastestream	Average Flow (MGD)	Description	Dynegy Notes
Stormwater runoff and wash water	Unknown/ Not Metered	Stormwater runoff from the FGD pad mix stackout pile and wash water from the associated truck wash system.	These flows are intermittent and collected in the impoundment via gravity drainage. Dynegy will need to employ temporary diversion measures to pump this water to the FGD stabilization area sump while the Gypsum Recycle Pond is being closed by
Misc Process Wastewater	Unknown/ Not Metered	Includes drainage from the FGD Waste Handling Building, Coal Conveyor 56E/W, and Fly Ash Silo (via the trench system).	removal. Once the CCR wastestreams are modified to bypass the Gypsum Recycle Pond and it has been closed by removal of CCR solids, it will be repurposed as a non-CCR basin and will continue to receive these flows.

Table 2-3	Zimmer	Gypsum	Recycle	Pond	Non-CCR	Wastestreams
-----------	--------	--------	---------	------	---------	--------------

Table 2-4: Zimmer Coal Pile Runoff Pond Non-CCR Wastestreams

Non-CCR Wastestream	Average Flow (MGD)	Description	Dynegy Notes
Coal Pile Runoff from A and B Basins	Unknown/ Not Metered	Flow is pumped from the Basins to the Coal Pile	These flows will be temporarily rerouted to D Basin until the pond retrofit project is complete. The D
Decant water and stormwater from C Basin	Unknown/ Not Metered	overflows to the Wastewater Pond.	Basin effluent will need to be pumped to the Wastewater Pond. Rerouting flows will require installation of temporary piping. If the Coal Pile Runoff Pond were bypassed, the
Decant water and stormwater from D Basin	0.09 - 1.95	Decant water flow is pumped from D Basin to the Coal Pile Runoff Pond during dredging operations and as needed due to stormwater.	fines and Zimmer would risk violating the discharge limits at Outfall 005.

Non-CCR Wastestream	Average Flow (MGD)	Description	Dynegy Notes
Landfill Leachate and Contact Stormwater	0.298	Routed through the Mercury Effluent Treatment System	The Mercury Effluent Treatment System discharge (including CCR and non-CCR wastestreams) will be redirected to the D-Basin through temporary piping during retrofit of the Coal Pile Runoff Pond.

2.1.3 Site-Specific Conditions Supporting Alternative Capacity Approach – § 257.103(f)(1)(iv)(A)(1)(i)

As shown on Figure 1 in Appendix A, Zimmer is bounded by the Ohio River to the west, village of Moscow to the south, Ohio River Scenic Byway (US Highway 52) to the east, and residential properties to the north. As such, there is not sufficient space available for the construction of a new pond(s) to store the CCR and non-CCR wastestreams. Further, the remaining impoundments onsite (A Basin, B Basin, C Basin, Wastewater Pond and Clear Water Pond) are not authorized to receive CCR material and are not large enough to independently store and/or treat the total volume of the plant non-CCR wastestreams, specifically coal pile runoff. Consequently, in order to continue to operate and generate electricity, Zimmer must continue to use the Coal Pile Runoff Pond and Gypsum Recycle Pond for treatment of both CCR and non-CCR wastestreams until the Coal Pile Runoff Pond can be retrofitted and Gypsum Recycle Pond inflows can be rerouted. The D Basin must remain open to receive CCR wastestreams during these modifications and will be closed once these projects are completed.

2.1.4 Impact to Plant Operations if Alternative Capacity Not Obtained – § 257.103(f)(1)(iv)(A)(1)(ii)

Each CCR surface impoundment is essential to plant operations as noted in Table 2-2, Table 2-3, and Table 2-4. The CCR surface impoundments receive CCR flows and a portion of the non-CCR wastewater flows onsite. The other impoundments onsite (A Basin, B Basin, C Basin, Wastewater Pond and Clear Water Pond) are not authorized to receive CCR material and are not large enough to independently store and/or treat the total volume of the plant non-CCR wastestreams, and specifically coal pile runoff. If these impoundments were removed from service prior to the requested site-specific deadline to initiate closure, the plant would be forced to cease operation. Furthermore, many of the non-CCR wastestreams are sourced from storm events and would not be possible to cease routing to these impoundments before April 11, 2021, even if the plant were idled to develop alternative disposal capacity for these wastestreams.

Consequently, in order to continue to operate and generate electricity and meet the discharge permit requirements, Zimmer must continue to use the Gypsum Recycle Pond and Coal Pile Runoff Pond for treatment of both CCR and non-CCR wastestreams until the Coal Pile Runoff Pond can be retrofitted with a CCR-compliant liner system and new effluent tanks can be installed for storage and redirection of the Gypsum Recycle Pond CCR wastestreams. Zimmer must also continue to use the D Basin to receive intermittent CCR and non-CCR wastestreams until the necessary modifications can be completed for the other impoundments onsite.

2.1.5 Options Considered Both On and Off-Site to Obtain Alternative Capacity

The options considered for alternative disposal capacity of the wastestreams currently routed to the CCR surface impoundments are summarized in Table 2-5. Additional details on the CCR and non-CCR wastestreams included in this demonstration request are found in Table 2-2, Table 2-3, and Table 2-4.

Alternative Capacity Technology	Average Time to Construct (Months) ¹	Feasible at Zimmer?	Selected?	Dynegy Notes
Conversion to dry handling	33.8	Yes	No	The bottom ash and fly ash wastestreams are dry handled or high recycle rate systems compliant with EPA regulations and not currently routed to the unlined CCR surface impoundments onsite, thus this technology option would not address Zimmer's alternative capacity needs.
Non-CCR wastewater basin	23.5	No	No	There is not adequate available real estate onsite within reasonable proximity to the plant to construct a new non-CCR wastewater basin.
Wastewater treatment facility	22.3	No	No	There is not adequate available real estate onsite within reasonable proximity to the plant to construct a new wastewater treatment facility.
New CCR surface impoundment	31	No	No	There is not adequate available real estate onsite within reasonable proximity to the plant to construct a new CCR surface impoundment.
Retrofit of a CCR surface impoundment	29.8	Yes	Yes	Dynegy plans to pursue this option for the Coal Pile Runoff Pond.
Multiple technology system	39.1	Yes	Yes	In addition to retrofitting the Coal Pile Runoff Pond, Dynegy plans to reroute CCR flows away from the Gypsum Recycle Pond to a new collection tank. Once the Gypsum Recycle Pond is closed by removal, the pond will be repurposed as a non-CCR basin.

Table 2-5:	Alternatives	for	Disposal	Capacity
------------	--------------	-----	----------	----------

Alternative Capacity Technology	Average Time to Construct (Months) ¹	Feasible at Zimmer?	Selected?	Dynegy Notes
Temporary treatment system	Not defined	No	No	The Coal Pile Runoff pond provides residence time for treatment of the surges from rain events with over eleven million gallons of storage. Dynegy has chosen to focus on implementing the necessary measures for the selected technologies described above rather than try to develop temporary solutions for treatment of the remaining CCR and/or non-CCR wastestreams.

¹From Table 3. *See* 85 Fed. Reg. at 53,534.

As EPA explained in the preamble of the 2015 rule, it is not possible for sites that sluice CCR material to an impoundment to eliminate the impoundment and dispose of the material offsite. *See* 80 Fed. Reg. 21,301, 21,423 (Apr. 17, 2015) ("[W]hile it is possible to transport dry ash off-site to [an] alternate disposal facility that is simply not feasible for wet-generated CCR. Nor can facilities immediately convert to dry handling systems."). Dynegy agrees with EPA in this assessment and confirms that off-site alternatives are not an option for wet-generated CCR and non-CCR wastestreams. There are no feasible offsite-disposal options for the wet-generated wastestreams at Zimmer.

2.1.6 Approach to Obtain Alternative Capacity

Dynegy installed monitoring wells in 2015 and performed background groundwater sampling between December of 2015 and July of 2017. During this time, several engineering firms assisted Dynegy in preparing the required CCR compliance documentation which Dynegy posted on its public CCR website. Key information is summarized in Table 2-1. The D Basin was certified as an unlined impoundment; however, the Coal Pile Runoff Pond and the Gypsum Recycle Pond were originally classified as lined per 40 C.F.R. § 257.71(a)(1)(i), which was subsequently vacated by the U.S. Court of Appeals for the D.C. Circuit. Accordingly, pursuant to 40 C.F.R. § 257.101(a)(1), these three ponds are now required to cease receiving CCR and non-CCR flows by April 11, 2021 and either complete a retrofit or initiate closure by that date.

In February of 2020, Dynegy hired Burns & McDonnell to evaluate the impacts to the plant from both the proposed CCR Rule and proposed ELG Rule changes and provide potential compliance options. The potential options examined for CCR Rule compliance included the following:

- <u>Option A</u>: Retrofit Coal Pile Runoff Pond and Gypsum Recycle Pond with a composite liner, removing solids from D Basin and abandoning in place. Install a concrete pad for geotextile tube layout during future dredging efforts. These tubes would receive dredge flows, capture the solids, and the pad would capture the decant water which would be returned to the Coal Pile Runoff Pond.
- <u>Option B</u>: Include Option A scope and retrofit D Basin with a composite liner and a drainage collection layer to support future dredging efforts in place of the concrete pad solution.
- <u>Option C</u>: Include Option A scope without the concrete pad. Future dredging efforts would involve alternate measures such as mobile filter presses or temporary liners for geotextile tube laydown areas.
- <u>Option D</u>: Install a composite liner in the D Basin and the Gypsum Recycle Pond, reroute the flows from the Mercury Effluent Treatment System to the retrofitted D Basin, and clean out the Coal Pile Runoff Pond. The Coal Pile Runoff Pond would no longer be considered a CCR impoundment and would remain in service as a process wastewater pond. Future dredging efforts would be performed similar to Option C; however, the frequency of this dredging is expected to be significantly reduced based on the larger size of D Basin.
- <u>Option E</u>: Reroute the centrate centrifuge effluent and magnesium thickener effluent directly to the Mercury Effluent Treatment System (bypassing the Gypsum Recycle Pond), remove solids from the Gypsum Recycle Pond and close the Gypsum Recycle Pond in accordance with the CCR Rule and construct a non-CCR impoundment in its place, temporarily direct the Mercury Effluent Treatment System effluent to D Basin, retrofit the Coal Pile Runoff Pond with a composite liner, and close the D Basin.

Dynegy investigated the possibility for meeting the alternate liner demonstration allowed under the proposed Part B Rule. The final requirements for this are unknown at this time; however, Dynegy has since elected to proceed with modifying plant operations and retrofitting the Coal Pile Runoff Pond at Zimmer. Dynegy has selected the Option E approach, which includes removal of CCR material and relocation of the CCR flows away from the Gypsum Recycle Pond to allow for Dynegy to close the pond and repurpose the pond as a non-CCR impoundment, retrofit of the Coal Pile Runoff Pond, and closure of the D Basin (once the retrofit of the Coal Pile Runoff Pond is completed). This selection was based on comparison of capital cost, O&M cost, and several business factors. The proposed retrofit project would include the following general scope and sequence:

• Relocate the CCR wastestreams from the Gypsum Recycle Pond:

- Install a 20,000-gallon agitated tank to receive the magnesium thickener overflow and a set of pumps to pump this water directly to the Mercury Effluent Treatment System through 3,300 feet of new 6" HDPE piping
- Install 3,300 feet of new 3" HDPE piping to direct the effluent from the centrate system to the Mercury Effluent Treatment System
- Isolate the Coal Pile Runoff Pond to allow for retrofit:
 - Temporarily reroute flows from the Mercury Effluent Treatment System to D Basin. Once the CCR solids are removed, the remaining water can be discharged to the Wastewater Pond.
 - Temporarily route flows from A, B, and C Basins to D Basin, and from D Basin to the Wastewater Pond. This activity allows for storm surges to be contained in the D Basin prior to routing flow to the Wastewater Pond, minimizing impacts to the residence time of that pond.
- Dewater the Coal Pile Runoff and Gypsum Recycle Ponds (removing any free water to the Wastewater Pond)
- Remove any remaining CCR material and other sediment from the ponds. The material will be temporarily staged within the ponds (or the adjacent stackout pad for the Gypsum Recycle Pond) to further dewater prior to being loaded onto trucks for transport to the onsite CCR Landfill.
- Retrofit the Coal Pile Runoff Pond pursuant to the retrofit criteria in 40 C.F.R. § 257.102(k):
 - Remove the existing bottom liner system (3-feet of clay) by excavating and hauling the material to the onsite CCR Landfill.
 - Install a composite liner system including a geosynthetic clay liner (GCL) overlain by a 60-mil high-density polyethylene (HDPE) geomembrane.
 - Install geotextile, 12 inches of crushed rock over the pond bottom, and 15 inches of riprap over the pond slopes.
- Return the Mercury Effluent Treatment System discharge, as well as the discharge from the A, B, and C Basins, to the Coal Pile Runoff Pond and initiate closure of the D Basin. The closure of D Basin is not considered part of this Demonstration, as it will occur after the requested site-specific alternative deadline to initiate closure.
- Close the Gypsum Recycle Pond by removing CCR material in accordance with 40 C.F.R. §
 257.102(c). Then repurpose the pond as a non-CCR surface impoundment which will receive
 stormwater, wash water, and other low-volume wastewater. The new non-CCR surface
 impoundment discharge will likely bypass the Mercury Effluent Treatment System and be routed
 directly to the Wastewater Pond.

2.1.7 Technical Infeasibility of Obtaining Alternative Capacity

The Coal Pile Runoff Pond and Gypsum Recycle Pond are "eligible unlined CCR surface impoundments," and thus were not previously subject to closure. Dynegy began its selected compliance project execution for Zimmer with scoping studies in early 2020 and is in the process of procuring engineering services for detailed design for the preferred compliance approach. Consequently, it is not possible to implement the measures discussed above in a way that would likely be successful by April 11, 2021.

The conditions at Zimmer demonstrate that no alternative disposal capacity is available on-site or off-site, satisfying the requirement of 40 C.F.R. § 257.103(f)(1)(i), and Dynegy respectfully requests a site-specific extension of the deadline to initiate closure of the CCR surface impoundments until the date on which those actions are expected to be completed. Dynegy will need until October 20, 2021 to reroute the CCR wastestreams away from the Gypsum Recycle Pond, complete the closure of the Gypsum Recycle Pond, retrofit the Coal Pile Runoff Pond, and to cease routing all CCR and non-CCR flows to D Basin and initiate its closure.

2.1.8 Justification for Time Needed to Complete Development of Alternative Capacity Approach – § 257.103(f)(1)(iv)(A)(1)(iii)

The schedule for developing alternative disposal capacity is described in more detail in Sections 2.2 and 2.3. The milestones for progress are summarized in Table 2-6 below. Dynegy believes this represents the fastest technically feasible timeframe for compliance at Zimmer, and these durations are consistent with EPA's assessment that 4-12 months accurately reflects the amount of time needed to retrofit a small surface impoundment. *See* 85 Fed. Reg. at 53,529.

Year or Progress Reporting Period	Status	Milestone Description	Dynegy Notes
2020	Completed	Evaluate retrofit scenarios, choose preferred option	Dynegy is in the process of procuring engineering
2020	On Schedule	Procure engineering services for detailed design	services for detailed design.

Table 2-6: Retrofit Project Progress Milestones

Year or Progress Reporting Period	Status	Milestone Description	Dynegy Notes
April 30, 2021	Scheduled	Complete detailed design for the Coal Pile Runoff Pond Retrofit and Gypsum Recycle Pond CCR wastestream reroutes and award equipment contracts for new tank/pumps. Concurrently, apply for Dam Safety Permit and State Water Pollution Control Construction / Operating permit	All pond modification construction is forecasted to be completed within this calendar year.
October 20, 2021	Scheduled	Bid/award pond modification construction contract. Receive Dam Safety Permit, State Water Pollution Control Construction / Operating permits, and General NPDES Permit for Storm Water Discharges from Construction Activities and Stormwater Pollution Prevention Plan. Complete reroute of CCR wastestreams to effluent tanks and close Gypsum Recycle Pond by removal, complete retrofit of Coal Pile Runoff Pond	Dynegy is projecting that reroute activities for the Gypsum Recycle Pond can be completed, the Coal Pile Runoff Pond retrofit construction can be completed, and the flow of CCR and non-CCR wastestreams to D Basin can cease as of October of 2021.

2.2 Detailed Schedule to Obtain Alternative Disposal Capacity - § 257.103(f)(1)(iv)(A)(2)

The required visual timeline representation of the schedule is included in Appendix B of this demonstration and described further in Section 2.3 below.

2.3 Narrative of Schedule and Visual Timeline - § 257.103(f)(1)(iv)(A)(3)

The third section for the workplan is a "detailed narrative of the schedule and the timeline discussing all the necessary phases and steps in the workplan, in addition to the overall timeframe that will be required to obtain capacity and cease receipt of waste." 85 Fed. Reg. at 53,544. As EPA explained in the preamble to the Part A rule, this section of the workplan must discuss "why the length of time for each phase and step is needed, including a discussion of the tasks that occur during the specific stage of obtaining alternative

capacity. It must also discuss the tasks that occur during each of the steps within the phase." 85 Fed. Reg. at 53,544. In addition, the schedule should "explain why each phase and step shown on the chart must happen in the order it is occurring and include a justification for the overall length of the phase" and the "anticipated worker schedule." 85 Fed. Reg. at 53,544. EPA notes the overall "discussion of the schedule assists EPA in understanding why the time requested is accurate." 85 Fed. Reg. at 53,544.

This section of the demonstration is focused on the remaining work necessary to obtain alternate disposal capacity for the CCR and non-CCR wastestreams and complete the modifications to the two CCR surface impoundments (the Gypsum Recycle Pond and Coal Pile Runoff Pond) at Zimmer prior to initiating closure of the D Basin. Based on the estimated durations shown in the schedule in Appendix B, the impoundment modifications will likely only require one construction season for completion. The following paragraphs outline the scope required for the retrofit of each impoundment.

Design and Permitting Activities: Dynegy is in the process of bidding and awarding an engineering contract for design of the retrofit for the Coal Pile Runoff Pond and flow modifications to support closure of the Gypsum Recycle Pond so the area may be repurposed as a non-CCR basin. Dynegy has included four months for the selected engineering firm to prepare the retrofit plan (per § 257.102(k)(2)) and the bid documents following notice to proceed. This is based on typical preparation and review time for the technical documents, lead time for the equipment submittals, and includes Dynegy development of the commercial terms for the construction contract. Once the bid documents are ready to be issued, the construction contract will be bid and awarded. Dynegy has assumed the bid period will be three weeks long and that it will take two weeks to evaluate bids and select the preferred contractor and another four weeks to negotiate the commercial terms for award of the contract. This design phase will be performed concurrently with acquiring the construction/operating permits and the general NPDES permit, dam safety permit modifications (if required), and developing a Stormwater Pollution Prevention Plan, for this project.

Equipment Procurement: Dynegy will procure the new shop-fabricated tank and pump skid(s) necessary to route the magnesium thickener overflow to the Mercury Effluent Treatment System. Based on Burns & McDonnell experience on similar projects, the shop fabricated tank and pumps are expected to have a lead times of 21 and 28 weeks from contract award to delivery, respectively. The specifications will be prepared within one month of selecting the engineering firm, will be bid out over a three-week period, and will be awarded within one month of receiving bids. The design submittals should be received within one month of contract award, allowing the engineering design of the foundations and power supply systems to be completed approximately two months after contract award. The equipment should be onsite in the Summer of 2021 as shown in Appendix B.

<u>Gypsum Recycle Pond Activities:</u> The durations shown on the project schedule are estimates by Burns & McDonnell and are based on an average work schedule of five ten-hour days per week, are subject to delays from periods with significant rain events or from impoundment/CCR dewatering impacts, and are based on the following scope of work which must be performed in the sequence listed below:

- Contractor shall order necessary materials and mobilize to the site. The lead time for the piping materials are shown on the Appendix B schedule and are based on Burns & McDonnell estimates for this scope of work.
- Contractor shall construct the foundation for the new tank and pump skid. This can be completed once the contractor is onsite and the necessary materials have been received. Three weeks were allotted for preparing subgrade, form work, rebar, and pouring this foundation. Burns & McDonnell has assumed that deep foundations and piling will not be required for this equipment.
- Contractor will construct the long runs of HDPE piping for the centrate system effluent and the magnesium thickener effluent. These lines are each approximately 3,300 feet in length and will require fusion of the piping, trenching, and backfill operations. This work is anticipated to require 3 months of effort. It can be started prior to having the tank and pumps in place and available, but not until the initial deliveries of pipe material are completed. The current schedule shows the trenching efforts beginning one month after the pipe material is ordered and two weeks before the final pipe deliveries are completed.
- Contractor will set the tank and pump skid(s) following (1) construction of the foundation and (2) delivery of the equipment.
- Contractor will install the pipe from the current thickener effluent system to the new tank and from the tank to the new pump skids. The Contractor will also install raceway and cable for the new pump and agitator power feeds. These activities are based on one-month durations and are not on the critical path for the project. They cannot be completed until the equipment is set in place.
- Once the tank, pumps, piping, and power systems are installed, the Contractor can start up the new system and divert the CCR wastestreams away from the Gypsum Recycle Pond. The remaining non-CCR wastestreams are intermittent and will continue to be routed to the pond.
- Contractor shall remove the free water and any remaining CCR material and other sediment from the impoundment and haul this material to the Zimmer Landfill.
 - It's estimated approximately 800 cubic yards (CY) of CCR material will be removed from the pond, which should be able to be completed in a single work day with allowance for the pond bottom to be washed down and visually inspected by Dynegy's Consultant to confirm CCR

material has been removed. It was assumed the existing concrete liner (approximately 3,100 square yards) will remain in place.

Since the impoundment is currently not exceeding a groundwater protection standard, the closure of this impoundment should be complete once the CCR material has been removed (per the standard outlined in § 257.102(c)). The pond footprint will remain and serve as a new non-CCR surface impoundment which will continue to receive intermittent stormwater and low volume wastewater flows.

<u>Coal Pile Runoff Pond Retrofit Activities:</u> The durations shown on the project are estimates by Burns & McDonnell and are based on an average work schedule of five days per week, are subject to delays from periods with significant rain events or from impoundment/CCR dewatering impacts, and are based on the following scope of work which must be performed in the sequence listed below:

- Contractor shall order necessary materials and mobilize to the site. This requires geosynthetic materials as necessary to complete the project scope as well as valves and piping for the water redirection efforts.
- Contractor shall temporarily reroute A, B, and C Basin discharges to D Basin and reroute the D Basin discharge to the Wastewater Pond. This will require the addition of valves and temporary piping to relocate these streams.
- Contractor shall redirect flow from the Mercury Effluent Treatment System to D Basin so that CCR solids from the Coal Pile Runoff Pond may be captured in D Basin during the retrofit activities. Excess water will be pumped to the Wastewater Pond for discharge.
- Contractor shall remove the free water and then remove any CCR material, sediment, and the 3foot clay liner from the impoundment, and haul and place this material at the Zimmer Landfill.
 - This schedule duration is based on the Contractor removing approximately 24,000 CY of material at 3,000 CY each day and with an allowance of 15% for delays due to weather or other factors. The pond bottom will be visually inspected by Dynegy's Consultant to confirm CCR material and bottom liner have been removed. Five days were included in the schedule for the inspection activities to be performed. Once approved, the subgrade will be prepared for the liner placement.
- Contractor shall install a GCL over the sides and floor of the Coal Pile Runoff Pond and secure it in a perimeter anchor trench. Contractor shall install a 60-mil HDPE geomembrane liner directly over the GCL and secure it in a perimeter anchor trench. This will occur at the same time as the GCL placement, lagging slightly behind it but overlapping. Consequently, these activities are shown on the same timeline in Appendix B.

- This schedule duration is based on the Contractor placing approximately 2.7 acres of material at one acre per day per layer (two layers total) and with an allowance of 15% for delays due to weather or other factors as well as a few days to complete construction quality assurance testing for the geomembrane liner.
- Contractor shall install geotextile fabric over the HDPE geomembrane liner. Again, approximately 2.7 acres of material will be placed at about one acre per day. This work must be completed following completion and inspection of the GCL and HDPE liners. Over the fabric layer, Contractor will install at least 12 inches of crushed rock over the pond bottom (approximately 1,700 CY placed at about 1,000 CY a day) and 15 inches of riprap over the pond slopes (approximately 2,200 CY placed at about 500 CY a day). Again, 15% allowance was included in for delays.
- The Contractor shall pump off stormwater as necessary from the Coal Pile Runoff Pond to D Basin during construction. This is an ongoing activity that will be required following each rain event during the construction period. Consequently, it is not shown on the construction schedule.
- Once the crushed rock and riprap layers are installed and any remaining punch list items are closed out, Dynegy will post the required notification of retrofit completion and resume operation of the Coal Pile Runoff Pond. Dynegy may then initiate closure of the D Basin.

2.4 Progress Towards Obtaining Alternative Capacity - § 257.103(f)(1)(iv)(A)(4)

In the preamble to the final Part A rule, EPA explains that this "section [of the workplan] must discuss all of the steps taken, starting from when the owner or operator initiated the design phase all the way up to the current steps occurring while the workplan is being drafted." 85 Fed. Reg. at 53,544. The discussion also "must indicate where the facility currently is on the timeline and the processes that are currently being undertaken at the facility to develop alternative capacity." 85 Fed. Reg. at 53,545.

Dynegy has made progress toward preparing a strategy for creating alternative disposal capacity for the CCR and non-CCR wastestreams at Zimmer. Dynegy has evaluated alternatives and selected a retrofit scenario. The remaining activities are provided in Appendix B and summarized in Table 2-6.

3.0 DOCUMENTATION AND CERTIFICATION OF COMPLIANCE

To demonstrate that the criteria in 40 C.F.R. § 257.103(f)(1)(iii) has been met, the following information and submissions are submitted pursuant to 40 C.F.R. § 257.103(f)(1)(iv)(B) to demonstrate that the CCR surface impoundments at Zimmer are in compliance with the CCR Rule.

3.1 Owner's Certification of Compliance - § 257.103(f)(1)(iv)(B)(1)

In accordance with 40 C.F.R. § 257.103(f)(1)(iv)(B)(1), I hereby certify that, based on my inquiry of those persons who are immediately responsible for compliance with environmental regulations for the CCR surface impoundments at Zimmer, the facilities are in compliance with all of the requirements contained in 40 C.F.R. Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments. Zimmer's CCR compliance website is up-to-date and contains all the necessary documentation and notification postings.

DYNEGY ZIMMER, LLC

ignthin E Ubdy

Cynthia Vodopivec VP - Environmental Health & Safety September 28, 2020

3.2 Visual Representation of Hydrogeologic Information - § 257.103(f)(1)(iv)(B)(2)

Consistent with the requirements of § 257.103(f)(1)(iv)(B)(2)(i) - (iii), Dynegy has attached the following items to this demonstration:

- Map(s) of groundwater monitoring well locations in relation to the CCR unit (Attachment C1)
- Well construction diagrams and drilling logs for all groundwater monitoring wells (Attachment C2)
- Maps that characterize the direction of groundwater flow accounting for seasonal variations (Attachment C3)

3.3 Groundwater Monitoring Results - § 257.103(f)(1)(iv)(B)(3)

Tables summarizing constituent concentrations at each groundwater monitoring well through the first 2020 semi-annual monitoring period are included as Attachment C4.

3.4 Description of Site Hydrogeology - § 257.103(f)(1)(iv)(B)(4)

A description of site hydrogeology and stratigraphic cross-sections of the site are included as Attachment C5.

3.5 Corrective Measures Assessment - § 257.103(f)(1)(iv)(B)(5)

Background sampling began at Zimmer in late 2015 and continued for eight consecutive quarters. The first semi-annual detection monitoring samples were collected in November 2017. The first assessment monitoring samples were collected in May 2018. The results, through the first 2020 semi-annual monitoring period, indicate all three CCR surface impoundments at Zimmer are currently in assessment monitoring, with no exceedances of the Appendix IV parameters. Accordingly, an assessment of corrective measures and the associated remedy selection efforts are not currently required at the site.

3.6 Remedy Selection Progress Report - § 257.103(f)(1)(iv)(B)(6)

As noted above, an assessment of corrective measures and the resulting remedy selection efforts are not currently required for the CCR surface impoundments at Zimmer.

3.7 Structural Stability Assessment - § 257.103(f)(1)(iv)(B)(7)

Pursuant to § 257.73(d), the initial structural stability assessment reports for the Coal Pile Runoff Pond, Gypsum Recycle Pond, and D Basin were prepared in October 2016, and are included as Attachment C6. As required for compliance, additional stability assessments will be completed in October 2021.

3.8 Safety Factor Assessment - § 257.103(f)(1)(iv)(B)(8)

Pursuant to § 257.73(e), the initial safety factor assessment reports for the Coal Pile Runoff Pond, Gypsum Recycle Pond, and D Basin were prepared in October 2016, and are included as Attachment C7. As required for compliance, additional safety factor assessments will be completed in October 2021.

4.0 CONCLUSION

Based upon the information submitted in this demonstration, the CCR surface impoundments at Zimmer qualify for a site-specific alternative deadline for the initiation of closure as allowed by 40 C.F.R. § 257.103(f)(1).

Therefore, Dynegy requests that EPA approve the demonstration and grant an alternative deadline of October 20, 2021 to retrofit the Coal Pile Runoff Pond, reroute CCR wastestreams away from the Gypsum Recycle Pond to the Mercury Effluent Treatment System, close the Gypsum Recycle Pond and repurpose as a non-CCR basin, and initiate closure of D Basin in accordance with the CCR Rule. As discussed previously, this date is subject to delays from weather during construction or from challenges in CCR material removal and dewatering. Dynegy will update EPA on the project and any potential schedule impacts as part of the semi-annual progress reports required at 40 C.F.R. § 257.103(f)(1)(x), and if a need for a later compliance deadline is determined, Dynegy will seek additional time as described in 40 C.F.R. § 257.103(f)(1)(vii).

APPENDIX A – SITE PLAN AND WATER BALANCE DIAGRAM

APPENDIX B – SCHEDULE

D	Task Name	Duration	Start	Finish				Half 1, 2	020	1		Hal	f 2, 2020)		
1	CCP Compliance Efforts	1710 dove	Eri //17/16	Wod 11/17	D	J	F	M	A N	1 J	J	A S	0	N	D	J
2	Einal CCP Bule Bublished in Eederal Begister	0 days	F(1 4/17/15)	Eri 1/17/15	/21											
3	BMcD Retained by Dynegy to Review ELG Compliance Impacts	30 days	Thu 11/1/18	Wed 12/12,	/18											
4	BMcD Retained by Dynegy to Review CCR Compliance Impacts	30 days	Sat 2/1/20	Thu 3/12/2	D											
5	Installed Groundwater Monitoring Wells	12 days	Wed 9/9/15	Thu 9/24/1	5											
6	Background Groundwater Sampling	403 days	Tue 12/29/15	Thu 7/13/1	7											
7	Completed Liner Documentation	0 days	Thu 10/13/16	Thu 10/13/	16											
8	Prepared Surface Impoundment History of Con	st0 days	Thu 10/13/16	Thu 10/13/	16											
9	First Detection Monitoring Samples	0 days	Mon 11/13/17	Mon 11/13	/17											
10	Assessment Monitoring Program - First Round	45 days	Tue 5/8/18	Mon 7/9/18	3											
11	Assessment Monitoring Program - Second Rou	nc15 days	Tue 9/18/18	Mon 10/8/2	L8											
12	Assessment Monitoring Program - Third Round	37 days	Wed 3/13/19	Thu 5/2/19												
13	Assessment Monitoring Program - Fourth Roun	d 26 days	Wed 9/11/19	Wed 10/16	/19											
14	EPA Published Proposed Draft ELG Rule and CC Holistic Approach to Closure Part A Rule	R 0 days	Mon 12/2/19	Mon 12/2/2	12/2 b 12/2	2										
15	EPA Published Final CCR Holistic Approach to Closure Part A Rule	0 days	Fri 8/28/20	Fri 8/28/20								◆ 8/2	:8			
16	Semi-Annual Progress Report #1	0 days	Fri 4/30/21	Fri 4/30/21												
17	Prepare Written Retrofit Plan - Coal Pile Runoff	F20 days	Thu 3/18/21	Thu 4/15/2	1											
18	Publish Notification of Intent to Retrofit - Coal Pile Runoff Pond	0 days	Thu 7/22/21	Thu 7/22/2	1											
19	Publish Notification of Intent to Close - Gypsum Recycle Pond	n O days	Wed 10/6/21	Wed 10/6/2	21											
20	Cease Placing CCR and non-CCR wastestreams in unlined impoundments	0 days	Wed 10/20/21	Wed 10/20,	/21											
21	Publish Notification of Completion of Retrofit Activities - Coal Pile Runoff Pond	0 days	Wed 11/17/21	Wed 11/17,	/21											
22	Impoundment Retrofit - Engineering and Construction Procurement Efforts	358 days	Mon 1/27/20	Wed 6/9/2	1											
23	BMcD Alternatives Analysis	35 days	Mon 1/27/20	Fri 3/13/20												
24	Dynegy Review Alternatives, Select Preferred Option, and Prepare Demonstration for Site-Specific Alternate to Intiation of Closure	141 days	Mon 3/16/20	Mon 9/28/2	20											
25	Spec, Bid and Award Engineering Services for Pond Retrofit Project	47 days	Tue 9/29/20	Wed 12/2/2	20											
26	Detailed Design: Prepare Pond (Gypsum Recycl Pond, Coal Pile Runoff Pond) Modfication Bid	e 90 days	Thu 12/3/20	Wed 4/7/22	L											
27	Environmental Permitting	90 days	Thu 12/3/20	Wed 4/7/22	L											
		Tack			External T	acka				Manu	al Tack				і г.,	
		i dSK				asks				ivianua						isii-oniy
Projec	ct: Zimmer CCR Surface Impoundment	Split	•		External N	lilestone		♥		Durati	on-only	. .:			De	eadline
Date:	Thu 9/24/20	Milestone	•		Inactive Ta	ask				Manua	al Summa	ary Rollup			Pr	ogress
		Summary		[Inactive M	lilestone				Manua	al Summa	ary			1 M	anual Pr
		Project Summ	ary		Inactive Su	ummary]		Start-o	only		C			

ID	Task Name	Duration	Start	Finish				Half 1	, 2020					Half	2, 2020			
					D	J	F	М	A	Μ	J	J	Α	S	0	N	D	J
28	Obtain SWPPP Permit	40 days	Thu 4/8/21	Wed 6/2/21														
29	Dynegy Bid/Award Pond Modification Construction Contract	45 days	Thu 4/8/21	Wed 6/9/21														
30	Procurement - Magnesium Thickener Effluent Tank/Pumps	195 days	Thu 12/3/20	Wed 9/1/21														
31	Prepare Equipment Specifications	20 days	Thu 12/3/20	Wed 12/30/2	20													հ
32	Bid/Award Equipment Contracts	35 days	Thu 12/31/20	Wed 2/17/2	1													
33	Vendors Prepare/Submit Design Submittals	20 days	Thu 2/18/21	Wed 3/17/2	1													
34	Shop Fabricated Tank Delivery	105 days	Thu 2/18/21	Wed 7/14/2	1													
35	Pump Skid Delivery	140 days	Thu 2/18/21	Wed 9/1/21														
36	Gypsum Recycle Pond - CCR Wastestream Reroute and Closure by Removal	92 days	Thu 6/10/21	Fri 10/15/21	L													
37	Pipe Material Acquisition	30 days	Thu 6/10/21	Wed 7/21/2	1													
38	Contractor Mobilization to Site	15 days	Thu 6/10/21	Wed 6/30/2	1													
39	Construct Foundation for Tank and Pump Skid(s)) 15 days	Thu 7/1/21	Wed 7/21/2	1													
40	Install HDPE Piping - Trenching/Fusion/Backfill	60 days	Thu 7/8/21	Wed 9/29/2	1													
41	Set Tank	2 days	Thu 7/22/21	Fri 7/23/21														
42	Set Pumps	2 days	Thu 9/2/21	Fri 9/3/21														
43	Install BOP Piping/Valves/Power Supply	20 days	Mon 7/26/21	Fri 8/20/21														
44	Startup Tank/Pumps and Reroute Centrate and Mag Thickener Flows to Mercury Effluent	5 days	Thu 9/30/21	Wed 10/6/2	1													
45	Unwatering of Pond to Waste Handling Building	2 days	Thu 10/7/21	Fri 10/8/21														
46	Removal of Ponded CCR Material	5 days	Mon 10/11/21	Fri 10/15/21														
47	Coal Pile Runoff Pond Retrofit Construction	95 days	Thu 6/10/21	Wed 10/20/	21													
48	Liner Material Acquisition	30 days	Thu 6/10/21	Wed 7/21/2	1													
49	Temporary Reroute of Flows to D Basin (and to Wastewater Pond)	10 days	Thu 7/22/21	Wed 8/4/21														
50	Temporarily Redirect Mercury Effluent Treatment System to D Basin	10 days	Thu 7/22/21	Wed 8/4/21														
51	Unwatering of Pond to D Basin	5 days	Thu 8/5/21	Wed 8/11/2	1													
52	Removal of Remaining Ponded CCR Material	10 days	Thu 8/12/21	Wed 8/25/2	1													
53	Removal of Clay Bottom Liner and Preparation of Subgrade	10 days	Thu 8/26/21	Wed 9/8/21														
54	GCL & HDPE Liner Installation	10 days	Thu 9/9/21	Wed 9/22/2	1													
55	Geotextile & Crushed Rock Layer Installation	5 days	Thu 9/23/21	Wed 9/29/2	1													
56	Riprap Installation	5 days	Thu 9/30/21	Wed 10/6/2	1													
57	Punchlist, Piping Mods, and Contract Closeout	10 days	Thu 10/7/21	Wed 10/20/2	21													
58	Return Flows to Coal Pile Runoff Pond and Initiate Closure of D Basin	0 days	Wed 10/20/21	Wed 10/20/2	21													
	Т	ask			External T	asks					Manua	al Task					Fini	sh-only
Proied	t: Zimmer CCR Surface Impoundment	plit			External N	lilesto	ne	\diamond		I	Durati	on-onl	y				Dea	adline
	Extension Demonstration N	lilestone	•		Inactive Ta	ask					Manua	al Sumi	mary Ro	ollup 🛛			Pro	gress
Date:	Inu 9/24/20 S	ummary	I		Inactive M	lilestor	ne	\diamond		I	Manua	al Sumi	mary			[Ma	nual Pro
	Р	roject Sumn	nary		Inactive Su	ummar	ТУ				Start-o	only		C	-			

APPENDIX C – COMPLIANCE DOCUMENTS

APPENDIX C1 – MAP OF GROUNDWATER MONITORING WELL LOCATIONS

UPGRADIENT MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

CCR MONITORED UNIT

MONITORING WELL LOCATION MAP ZIMMER COAL PILE RUNOFF POND

FIGURE 1

O'BRIEN & GERE ENGINEERS, INC. A RAMBOLL COMPANY

UNIT ID:125

UPGRADIENT MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

CCR MONITORED UNIT

MONITORING WELL LOCATION MAP ZIMMER GYPSUM RECYCLING POND **UNIT ID:124**

FIGURE 1

O'BRIEN & GERE ENGINEERS, INC. A RAMBOLL COMPANY

UPGRADIENT MONITORING WELL LOCATION

- DOWNGRADIENT MONITORING WELL LOCATION
- CCR MONITORED UNIT

MONITORING WELL LOCATION MAP

FIGURE 1

O'BRIEN & GERE ENGINEERS, INC. A RAMBOLL COMPANY

ZIMMER D BASIN **UNIT ID:121**

VISTRA CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

APPENDIX C2 – WELL CONSTRUCTION DIAGRAMS AND DRILLING LOGS

COMPA DROJE COORO	TION OF	EP M.S BORIN	940 970	Pli W	1 m T	20			0G 	OF Lu	BORING NO. 7-117 BORING NO. 7-117 DATE 4-26-89 SI TYPE OF SAMPLES: SPT 3" TUBE CASING USED 512E (11/1) DRILLING M BORING SEGUM 4-201 0 G	LEET OF
WATE TIME DATE	ER LEVE	L 0 / 4	Floc 38.0 1:00 1-27	89		~ M	O KLI T	ORINS	w		GROUND ELEVATION SILL REFERRED T FIELD PARTY Howell - DAMST	o Rig
SAMPLE Number	SAM DEP IN F FRON	PLE TH EET TO	ST PEN RES BL	AN OA ETRA ISTAI	RO TION NCE / 6"	TOTAL LENGTH RECOVERY	Rad %	DEPTH IN FEET	GRAPH LOG	L S C S	SOIL / ROCK IDENTIFICATION	DRILL NOT
-			-					-				
1	25	4.0	2	5	8	15"		- Inde			Clay- Be- moist - med to Low plasticity	
										CL		
~	ac	0.4	2	2	0	10.		- Inde			Same AS 1	
-	1.7.5	7.0				18.						
					1			10				
3	125	14.0	3	4	5	18.					SITT CIA+ - MUTTi-coloned BA	•
	1		1							ce		
4	17.5	19.0	3	4	5	18					SAME AS To	
				1						-		

COMPA	NY							L	0G —	OF	BORING BORING NOZ117 DATE SI	HEET Z OF
COORO	NATES	Denu							-		CASING USED SIZE DRILLING M	CORE
Loca	TION OF	BORING	51								BORING BEGUN BORING COMPLETED)
WATE	A LEVE								-		GROUND ELEVATION REFERENCE T	0
DATE											FIELD PARTY	Rig
SAMPLE Number	SAM DEP IN F FRON	PLE TH EET TO	ST PEN RES BL	ANOA ETRA SISTAI	R 0 T 1 D H N C E / 6"	TOTAL LENGTH Recovery	R & D	OEPTH IN FEET	GRAPH LOG	USCS	SOIL / ROCK IDENTIFICATION	DRILLER' NOTES
								20				
											4. C **	
~	1.1		0	1	11	10%	1	. 3				
3	22.5	24.0	X	5	4	19					Wet- Med TO Low PLASTICITY	
			-		-	-	-	1		CL.	A. T Q '	-
	1			1							CIAY- GRAY- WET- med to	
								1			Low plasticity	
						1		- date		e.		
-				-	-	-		-				
6	27.5	29.0	2	3	3	18"		E I			5/AY- GAAJ- WET. med To	
											how PLASTICITY	
										1/2		
-	-		-	-	-					_		
					1			30-				
					1				ł	-		
					1	1		i T	t			
1	325	34.0	1	2	3	18"	-		-	-	SAME AS 6	
									ł			
	0		i .	1	1	1		F				
									E			
			-	-		-		1				
								3				
Q	370	240	20	21	17	1."			F		Carly Canal Gass Day	
0	21,3	41,0	RU	16	1ª	10					SAFURATEd - QUARTZ- ROUNDED	
						-		1			"h" MALSies - uf Fines	
										SM	· · · · · · · · · · · · · · · · · · ·	
					1							
	c" - 1	1 25 H	15.0		1	1		10-		-		

	NY				_			L	OG	OF	BORING BORING TIT	3
ROJE									-		TYPE OF SANPLES: SPT 3"TURE	SHEET J OF
Loca	TION OF	BORING							-	1	CASING USEO SIZE DRILL	ING NUO USEO
LOCK											BORING BEGUN BORING COMPL	
WATE	R LEVE										GROUND ELEVATION REFERM	ED TO
DATE							-				FIELO PARTY	RIG
_							-		_		1	
SAMPLE Number	SAM DEP IN F FRON	PLE TH EET TO	ST PEN RES BL	ANOAI ETRAT	RO FION NCE / 8	TOTAL LENGTH RECOVERY	rq 0 %	0ЕРТН IN Feet	GRAPH LOG	U S C S	SOIL / ROCK IDENTIFICATION	DRILLER'S NOTES
					_			40_				
					_			that				_
9	42,5	44,0	10	15	15	12"	1			-	Sand- BR- QUARTZ- Mer	5/
		6			-			11		SW		
								11				
			-		-	-						
			-	-	-			1 P		_		
						_		1		-		
			0								SAND- BR- QUART - SATU	rated
10	47.5	49,0	8	12	17	12	-	11				
										SP		
								1111				
	1							Ξ			/	
				-				50		-		
		1							13		I	
		-									Sand + GARYEL- BA-SATURAI	red
1	52.5	240	15	17	10	14		1		-	CHARTZ - Kounded - 1 MAX S Cul Fines - STRONG REACTION	10
											Then	
										GM		
	1									_		
				-	-			- P				
		S						111	8 6			
								11				
12	\$7.5	59.0	12	14	16	15		, in the second s		-	DANG- BR- SATURATEd.	10
								E			STROWN REALTION TO ALL	
								-		SP		
-	1	-	-					111		-		
						=		40-				
	6"x 3	3.25 H	SA									
	н м с	ASING	OVAN	CER 4				2				
	NO O	CORE R	OCK			1				1		

•

Joa N	0					А		L	OG	OF	BORING	
	NY										BORING NO 2117 DATE	HEET 4 OF
									-		TYPE OF SAMPLES: SPT 3"TUBE	
COORD	INALES				-				-	1	CASING USED SIZE DRILLING	MUD USED
Loca	TION OF	BORIN	G :						_		BORING BEGUN BORING COMPLETE	0
WAT	ER LEVE	L.]	GROUND ELEVATION REFERRED	το
TIM	E					-			-			D
DAT	ε		-							1	FIELD PARTY	Ric
SAMPLE Number	SAM OEF IN F	PLE TH EET	ST PEN RES	ANDA IETRA SISTA	RD T10N NCE / 6	TOTAL LENGTH Recovery	RQ 0 %	DEPTH IN FEET	GRAPH LOG	u s c s	SOIL / ROCK IDENTIFICATION	DRILLEI
				T								
				-	-	-		40_		-		
								Ē				
	-			1	1		7 - 1	E				
13	62.5	64.0	16	17	11_	13"				-	GRAVELLY SITT SAND- BR-	
				1.0				Ē		-	SATURATEd - QUARTZ - 34"	
	-		-	-	-					-	MAK SIZE - STRING REALTION	
								Ξ.	1	-	10 HCL	
-	-	-	1	1	1	-				-		
								Ξ		-		
					1			12				1
		-						1				
								2				
14	67.5	64.0	29	39	31	16"		E E		-	SANd+ GRAJE - BA. SATURAT	d
								Ξ		_	QUARTZ- 1"MAX Size - up	
			-	-						-	FINCS - STRUNG REACTION	5
								1		-	ro HeL -	
-	-			-	-	-				-		
					1					-		
-	1	1	1	T	1	1		10-				1
					1			1	1	-	1	
		Ì			1	4		i I	ł			1.00
15	72,5	74.0	12	28	40	8					CLAYEY SANd + GRAVEL BR.	
	1							÷			SATURATEd - 1"MAX Size	
		1	-	1	4	1				_	Rounded - QUARTZ -STRONG	
I			i	1	1			1 3	1	-	Reaction TO Nel	
	-			-	-	-	-			GC		
			12	1	1	-		3		-		
		-	-		-	-		÷		-		1
							_	1				
					i							
16	77.5	79.D	14	30	38	9"					SAME AS 15	
								1				
			-				-			-		
										-		
			-	-		-	-	-		-		
	100				1		1.1	1	1	-		
	6" -	3 25 4	150	1	1	-		80-		-		
	HW 1	ULCO P Casing			L"	-						
	NO	Conr F	ROCK			-	-					
-	NW	CASING			5"	-				-		
						-					0	

CB NC							`	L	OG	OF	BORING	
OMPAI	NY										BORING NO. Z-11 DATE	SHEET 5 OF 5
DORDI	NATES				_						TYPE OF SAMPLES: SPT 3" TUBE	CORE
·		0			_			-	-		CASING USED SIZE DRILLING	NUD USED
LOCAT		BORING		_							BORING BEGUN BORING COMPLET	ED
WATE	A LEVE	L I									GROUND ELEVATION REFERRED	то
TIME							-		-			DAT
DATE			-				-		-		FIELD PARTY	Ric
SAMPLE JUMBER	SAM DEP IN F	PLE TK EET	ST. PEN RES	ANDA ETRA SISTA	RD TION NCE	TOTAL LENGTH LECOVERY	RQD %	DEPTH IN FEET	RAPN LOG	u s c s	SOIL / ROCK IDENTIFICATION	DRILLER'
012	FROM	TO	BL	0 ₩	/ 6"	-			G			
		1										-
-		1	-		-	-	-	80-				-
								3		-		
			-	-	-	1						
17	825	QU.n	8	11	13	11"		1 1			Genucly Sand. Br. SAFURA	red
	Lais	040	1	1	1	-		1			QUARTZ 14" MAX SIZT - ROUND	-d
								2			uf FINES + BLACK LIGNITE	
	1999			1				3			STRONG REACTION TO HEL	
	_	-		1.	1			3		1		
22												
								3		_		
								1				
			-	-	-					-		-
10	00-	00-	4	1.		14"		3		-	Contract De Contra	
18	1815	84.0	12	11	14	13				-	GRAVELLY SAND - ISA. SATURATU	
							0.3	=		-	CUARIC ROUNDER - 14 MAR SI	72
			-	-	-	-	-			-	To MAL	
				1		1		E		-	110 Men	
			-	-	1	1		1 3				
		1.1	1		i			1 3				
		1	1	1	1		1		}			
					1	1		1 -	1			
	1		1		1			1 =				
				-		-		-	1	-	Stopped Nole - 89,9 ANd	
	1		1	1		1		1	1	-	INSTAILED Z'OB well	
	·	!	1	-	1	-		1 -	-	-		
	1		1	1	1		1		1	-		
-			-	-	1-		-	1		1		
								1 3		-	4	
	1	-	1	-	-	1	-	1 3	1			+4
						1			1			
	-		1	1			1				the second s	
									1			
			1-2-5	180				1 3				
			1			1	-	1				1
										-		
			-	-	-		-	1 3	-	-		
				1	Î		1		1	-		
		-	1	1		-	1	-		-		
	6"x	3.25	HSA					-				
	Н₩	CASING	ADVAN	ICER	4	-		4				Marine Contraction of the second seco
	I NO	CORE	Rock			1		1	1			
-	ny				11	-			-	-		
_	1.4.4					_		-	-	-		

ROJE	NY AL	= P n mc N-57	л 00	PIE W	n T - 14	-		L	0G 	OF	BORING BORING NO. 219 DATE <u>3-2-89</u> SHI TYPE OF SAMPLES: SPT <u>5</u> 3" TUBE CASING USED SIZE DRILLING MU	EET OF _ S
WATE	TION OF	BORING	Flao 2.0	d pl	tin	10.0	Tan	cing (ve	1	BORING BEGUN $5 - 2 - 89$ BORING COMPLETED GROUND ELEVATION 509.9 REFERRED TO	<u>5-2-89</u>
DATE		5.	2-8	9	ځ	- 3 - 6	9			1	FIELD PARTY HOWELL - DARST	Rig 25
SAMPLE Number	SAM OEP IN F FROM	PLE TH EET TO	ST PEN RES BL	ANDA ETRAT	RD TIDN NCE / 6"	TOTAL LENGTH RECOVERY	rq d %	OEPTH IN FEET	GRAPH LOG	u s c s	SOIL / ROCK IDENTIFICATION	DRILLER'
				-		-						
1	2.5	4.0	6	7	9	14"					CIAY- BR- moist - med to Low plasticity	
		-			-					ci		
				-	-							
-			-	-	-					_		
2	7.5	9.0	3	4	4	12"					SAME AS I WI TRACE DR	
											V-Fine Smud	
					1			10-				
						-						
			2	4	1,	101						
5	12.5					10					VFine Sand	
						-		-		-		
				-	6		-					
<u>4</u>	17.5	M.O	2	S	8	16					V-Fine Sand	
	6"x	3.25 H	SA		1	4		20-		-		

...

OB NO	D			_				L	OG	OF	BORING BORING No. Z-119 DATE	SHEET 2 OF 5
DORO	NATES								_		TYPE OF SANPLES: SPT 3" TUBE	CORE
OC A	TION OF	BORING			_						CASING USED DRILLING	NUO USED
									_		BORING BEGUN BORING COMPLET	E0
WATE	RLEVE	L		_					-		GROUND ELEVATION REFERRED	DATU
DATE											FIELD PARTY	Ric
SAMPLE Number	SAM OEP IN F FROM	PLE TH EET TO	ST PEN RES BL	ANDAI ETRAT	R 0 F 10 N NC E / 6"	TOTAL LENGTH Recovery	rq 0 %	OEPTH IN FEET	GRAPH LOG	U S C S	SOIL / ROCK IDENTIFICATION	DRILLER'S NOTES
								20-				
-								1				
-		1										-
5	22.5	24.0	3	5	7	10					CIA+- muiti-colon Ans- mois	4
	1							Ξ			Mied. 10 ADW PIASIICII	
	1		-							ĆL		
	-			-	-	-						-
	1.0							3	1 1			
							1					
_				-	-	-	-	4 E		1		
,	27.5	19 17	4	<	2	16"	1.	3	1		Same AS 5	
0	12/15	21,0		0		10			1 [
_				-		1		- E				
				1	i	1		i E		-		
	-		-	1	1	1		30	it			
								<u> </u>				
	1	1			1	1 1		1 3	1 1	-		
-	-			-	1	-				-		
7	325	34,0	2	4	S	6"				-	Ina dy Clay - Multi-colon 1	Res
	1	1	1	1	1	1		1 -		-	maist w/ Da. Ba. Sand her	
	-		-	-	-	-	-			A1		
						1		3	1 E	ce		
								1 3] [1		i
_			-		-	-		-		-		
						1						
-	1		1					1 3			SANdy Clay- GRAY- moist ro	4
8_	37,5	39.0	1	2	3	16"	-	-			wet up VFine Garin sound	
				-				-			Lons'	
-		-	-	1	1	1	-			CL		
						1	1	un-				
	6"×	3.25 H	ISA		. 14	-		1				
	NO	CASING	YOCK YOVAN	LER 4				1				
	NW	CASING		3	5"							
	SW	CASING			5"			1			RECORDER	

•

OB N OMP# Roje	0			-	-			L	.0G	OF	BORING BORING NO. 2119 DATE SI	HEET 3 OF 5
OORC	INATES										TYPE OF SAMPLES: SPT 3" TUBE	CORE
LOCA	TION OF	BORING				_					CASING USED SIZE DRILLING N	UO USED
			6								BORING BEGUN BORING COMPLETED	
WAT	ER LEVE								-		GROUND ELEVATION REFERRED T	0
DAT	5										FIELO PARTY	Rig
									-			
SAMPLE Number	SAM DEP IN F FROM	PLE TH EET TD	ST PEN RES BL	AN OA E TRA ISTA	RO TION NCE / 6	TOTAL LENGTH Recovery	R Q D %	DEPTH IN FEET	GRAPH LOG	USCS	SOIL / ROCK IDENTIFICATION	DRILLER'S NOTES
								40				
								Innte			Marry Sand- Gan, Carry	4
9	42,5	44.0	2	2	3	16"					up onyonic marchial ywoods mix rune	0
										56		
0	47.5	49.0	1	1	13	16 "					QUANTZ - 13"MAX Siz - up Fines	
					1			50		5		
11	52.5	54,0	6	5	10	0						
											STARTED WAShins out AUS Phis	1
						~		1				
12	675	59.0	6	2	9	8"					SAND- BR- QUARTE- SATURATES TRACE OF PER GRAVEL-	1
								60		SP		- 11 -

•

LOCAT							•		_	Ur	BORING NO. Z-114 JATE	SHEET <u>7</u> OF 5
LOCAT	NATES						_		_	5	TYPE OF SAMPLES: SPT 3" TUBE	CORE
	TION DE	BORIN	G 1							1	CASING USED DILLING BORING BEGUN BORING COMPLETI	MUO USED
WATE	RLEVE	L			-					1	GROUND ELEVATION REFERRED	то
TIME			-			_		-	_			DAT
DATE		1							-	1	FIELD PARTY	Ric
SAMPLE Number	SAM OEP IN P	PLE TH EET	ST PEN RES	ANDA IETRA SISTAI	RO TION NCE	TOTAL LENGTH RECOVERY	RQ 0 %	OEPTH IN FEET	RAPH LOG	U S C S	SOIL / ROCK IDENTIFICATION	DRILLER
	FROM	то	81	. o w .		-						1
				-				60 -				
										-		
								. 1				
-			-	-	-	-				-		
13	12.5	140	9	13	19	16		3		-	Spind - RD. SPATURATEd	
								1 7			med TO Fine GRAM - Moder	ene .
	-	-	-		-		-			-	Reaction to Nel	
					1	-		=		50		
				-				1 2			1	
			-	-		-		_		-		
								E				
			1.00	1.1	1.00	11				100		
14	67.5	69.0	14	22	17	6				-	1 GARUC	· / ·
		1				1.00		Ξ		-	100 % Fine GRAIN STRONG	1.2
					i			1 3			REACTION TO HEL	
			-	-				70		10		
				1						5-	L	
1			1									
			-	-	-	1				-	e	
15	12.5	74.0	13	14	14	12"				-	SAME AS 14	
1	in a	1	1	1	1	1		-				
				-	-					-		
				- 14	×			1		-		
								-				
				-	-	-		-				
								111				1 - 1
							1			0		
16	77.5	79.0	17	24	32	141		-		-	SAME AS 14 GRAY	
1												
					1			111				
				1		-	-	80 -				

ós No						~	- ' '		00			-00
	NY							L	06	05	BURING	
ROJE	тт	_							-		BORING NO. 2117 DATE SI	IEET S OF S
OORO	NATES								-	11	TYPE OF SAMPLES: SPT 3 TUBE	
LOCA	TION OF	BORING									CASING USED DRILLING N	UD USED
-		-									BORING BEGUN BORING COMPLETED	
WATE	RLEVE	L					_			(L	GROUND ELEVATION REFERRED T	•
TIME												DATU
DATE		1									FIELD PARTY	RIG
			-	-				-	1.0	-		
we	SAM	PLE	ST PEN	ANDA: FTRAI	R D 7 1 0 N	JE É	RQD	DEPTH	L _c	5	SOIL / ROCK	DRILLER'S
MPL MBE		FFT	RES	ISTAL	NCE	NG NG	0/	IN -	I.	0.	IDENTIFICATION	NOTES
NUN						LEC T	70	FEET	8	>	10ENTITOR (10N	
	FROM	TO	81	1		-			-			
								00	1.1			
		-	-	-	1			00	1	-		
								1				
-				-	-				1			
		1.27	1						1			
					-						SAND- GARJ. SATURATEd	
-	025	04.0	9	13	14	141		2		1	AUARTZ - STROWS REALTION	
4	040	H.F.O		10	1	1	1	3			To Hall ment to Fime Garin	
			d = 0	1						50		
			-	-		1				F		
		I			I.		1 m					
		-	5.	-	-	-				-		1
		6.0.1								-		
-			1	-			-			-		
		()			1		· · · · · ·					
	-		1		1			1 3				A
18	975	89.0	13	13	13	12"		1	1	1.2	SAME AS 17	
	1	pine	1-	1	1		2					14
			1.1							-		
			1000		i							
					1			90-	1			
								10	4			
					1				1			
1					i) :	4			
-												
-	1		1	1	1	1.1		-	1	-		
19	92.5	94.0	10	12	12	16		-	1		SAME AS 17	(
	1	1	i	i	ł	1		-	1	-		
					-			-				
										-		
								-	-	-		
				1								1
			-		-							
			1	1				1	1			
1.1			-	-		-		<u>-</u>		-		
	1			1				1 6	E	-	Stopped Augers 94.9 +	
				-			-	_	1	-	installed well	
				1				-	1	-		
			-	-	-	-		3	-	-		
				1	i			:	3			
								1	1	-		
	6"x	3.25 H	SA			-						
	HW (CASING	ADVAN	CER 4	r					1		
						1			10.0	1		
	NQ	CORE F	COCK			-			1	1		

...

Monitoring Well MW-16

Sheet 1 of 2

Date(s) Drilled	8/2/16 - 8/3	/16		Logged By	J. Al	ten	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor	Fron	tz Drilling	Total Depth of Borehole	70.0 feet bgs
Date of Ground Measurement	^{lwater} 8/9/16			Sampler Type	Soni	c Sleeve	Surface Elevation	509.19 feet, msl
Depth to Groundwater	55.65 ft bg	S		Seal Material	l	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	511.66 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing		Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack	#5 Silica S	and		Well Complet at Ground Su	tion Irface	Riser, With locking cap and pro	tective casing.	
Comments								

DYNEGY ZIMMER ZIMMER STATION CCR WELLS.GPJ 11/23/16

Monitoring Well MW-16

Sheet 2 of 2

Monitoring Well MW-17

Sheet 1 of 2

Date(s) Drilled	8/3/16			Logged By	J. Al	Iten	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor	Fron	ntz Drilling	Total Depth of Borehole	70.0 feet bgs
Date of Ground Measurement	water 8/9/16			Sampler Type	Soni	ic Sleeve	Surface Elevation	508.83 feet, msl
Depth to Groundwater	55.22 ft bg	S		Seal Material		Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	511.25 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing		Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack	#5 Silica S	and		Well Complet at Ground Su	tion rface	Riser, With locking cap and pro	tective casing.	
Comments								

		S		ES		WELL CONSTRUCTION
ion,	-					DETAILS
evat it	pth.		ser	hic	MATERIAL DESCRIPTION	Riser with
fee	De fee	ype	erc Secc	og og		and locking cap
	0	-	83		Medium brown to reddish brown friable SILT with some angular gravel, dry	
	-				-	
	-				grades with minor fine sand and more subrounded gravel, less angular	
	-				- gravel	
-505	_				grades stiff with gray mottles and some clay, less sand	
	5-					
	_					-8 8
-500	-				grades with more rounded fine gravel	-8 8
	10-		- 00		grades very sun, no gray motiles	2" LD. Schedule 40 PV/C
	-		30	H	Medium brown to grav clavev SILT, with few fine gravel, stiff to very stiff.	- Riser
	-			YИ	- moist	
405	-			YУ	-	
-495				КV	grades with abundant clay	
	15-			YУ	••••••••••••••••••••••••••••••••••••••	
				KV	grades with minor coarse sand	
	_			Hł	-	
-490	-			XX	- grades with black inclusions, and some rounded fine gravel, some coarse	- 20
	20	_	06	$ \mathcal{X} $	sand 	Bontonito/Comont Grout
	-		90	$ \mathcal{X} $	grades with no gravel, medium sun -	
	-				-	
	-				-	
-485				ĺΛ	grades with fewer gray mottles, less clay, more black inclusions, stiff	
	25-			ſИ		
]			ſИ		
	_			ſИ	grades medium stiff to soft, trace clay, minor coarse sand	
-480	_			ГИ.		-8 8
	30-			ŊИ	grades very sont, very moist	-8 8
	-		93	НΧ	- stiff	- 2
	-			YЖ	grades with some fine sand, less clav	
	-			КИ	grades with more fine sand	
475				КИ	2" reddish-brown silty sand seam, loose, moist	
	35⊸					
l					A=COM	
-						

DYNEGY ZIMMER ZIMMER STATION CCR WELLS.GPJ 11/23/16

Monitoring Well MW-17

Sheet 2 of 2

Monitoring Well MW-18

Sheet 1 of 2

Date(s) Drilled	8/4/16			Logged By	J. Al	ten	Checked By	Mike Wagner
Drilling Method	Rotosonic			Drilling Contractor	Fron	tz Drilling	Total Depth of Borehole	70.0 feet bgs
Date of Ground Measurement	^{lwater} 8/9/16			Sampler Type	Soni	c Sleeve	Surface Elevation	509.22 feet, msl
Depth to Groundwater	55.59 ft bg	S		Seal Material	l	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	511.63 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing		Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack	#5 Silica S	and		Well Complet at Ground Su	tion Irface	Riser, With locking cap and pro	tective casing.	
Comments								

DYNEGY ZIMMER ZIMMER STATION CCR WELLS.GPJ 11/23/16

Monitoring Well MW-18

Sheet 2 of 2

DYNEGY ZIMMER ZIMMER STATION CCR WELLS.GPJ 11/23/16

Project: Dynegy Project Location: Zimmer Station

Project Number: 60442412

Monitoring Well MW-7A Sheet 1 of 2

Date(s) Drilled	12/1/15		Logged By	ecky Smolenski	Checked By	Mike Wagner
Drilling Method	Rotosoni	c	Drilling Contractor	rontz Drilling	Total Depth of Borehole	64.0 feet
Date of Ground Measurement	^{1water} 12/18	/15	Sampler S	onic Sleeve	Surface Elevation	509.53 feet, msl
Depth to Groundwater	54.32 ft b	gs	Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	511.79 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches) 2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack	#5 Silica	Sand	Well Completion at Ground Surfa	n Riser, With locking cap and p	rotective casing.	
Comments			Ċ.			

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-7A

Sheet 2 of 2

DYNEGY ZIMMER ZIMMER STATION CCR WELLS GPJ 4/19/16

ROJE		P M-1	ER.	Pla F-	WT 130			L	0G	OF	BORING Ren BORING NO. 2124 DATE 4-20-89 S Type of Samples: SPT 5 3" Tube	HEET / OF 5
LOCA	TION DI	F BORIN	Floo	d pla	in ,	mon	Tar	mc we	115]	CASING USED SIZE DRILLING I BORING BEGUN 4-20-89 BORING COMPLETE	UD USED
TIME		10	1.00	-89							FIELD PARTY HOURS II - DARST	DATUA RIG 75
NUMBER	SAN DEI IN P FRON	TPLE PTH TEET TO	ST PEN RES OL	ANDA ETRA SISTAI DW	RD TION NCE / 6"	TOTAL LENGTH RECOVERY	RQD %	DEPTH IN FEET	GRAPH LOG	U S C S	SOIL / ROCK IDENTIFICATION	DRILLER'S NOTES
								hund				
1	30	4.5	4	5	5	0		- Innteed			Lime store Road base	
								lumber 1				
2	8.0	9.5	20	29	42	12"		unhun tuntur			SANd- BA- Moist - QUARTZ- STRONG REACTION TO HOL	
					+			10 -		5P		
3	13,0	14.5	16	39	5%	14"					Claser Sand Br. moist	
										se	STRONG REACTION TO HOL	*
4	10.0	10.5	17	20	45	11 "					S. I Paris in Starra	
7	18.0	(7,)		~7	73	16		Inter		50	REACTION TO HEL- 90%0 FINE GRAIN - QUARTZ	

"

OMPA ROJE	D NY CT INATES							L	.0G	OF	BORING Ren BORING NO. 2-12-1 DATE SI TYPE OF SAMPLES: SPT 3" TUBE CASING USED SIZE DRILLING M	amed MW-8
LOCA	TION OF	BORING	i:								BORING BEGUN BORING COMPLETED)
WATE	A LEVE					_			-		GROUND ELEVATION REFERRED T	0
DAT			_							1	FIELD PARTY	Rig
SAMPLE Number	SAM DEP IN F FRON	PLE TH EET TO	ST PEN RES BL	ANDA IETRA SISTA - DW	RD TION NCE / 6	TOTAL LENGTH RECOVERY	rg d %	DEPTH In Feet	GRAPH LOG	с с с С	SOIL / ROCK IDENTIFICATION	DRILLER'S NOTES
			_	-				20 -				
5	23.0	24.5	12	19	35	15"					SAND- BR- MOIST. STRONG REMETION TO HEL QUARTZ 80% Fine GRAIN	
								tertion.		8		
			507					- the second sec				
6	2B.0	29.5	7.4			6		1			SANd- BR. SATURATEd - QUARTE W/S BROKEN Lime STON FRAG- STRONG REACTION	
								30-		SP		
7	310	34.5	18	15	21	r4"		_			Class- BA- moist: med to	
-										a	Low plasticity	
										-		
8	28.0	39.5	7	9	12	16"		- Inntu			SHARE AS - 7 TRACE OF V-Fine SANA	
-												

·...

JOB NO Compai Projec Cooroi	D NY CT NATES			_				L	06	OF	BORING Rena BORING NO. Z-124 DATE SH TYPE OF SANPLES: SPT 3"TUBE	imed MW-8 دد <u>ع</u> ٥۶ <u>ع</u> _ ^{Cone}
LOCAT		BORING	5:						-	1	CASING USED SIZE DRILLING NI	
WATE	a l FVE								-		BORING BEGUN BORING COMPLETED	
TIME		-		-								
DATE]	FIELD PARTY	Rig
SAMPLE Number	SAM OEP IN F FRON	PLE TH EET TO	ST PEN RES BL	ANDAI ETRAI	RD FION NCE / 6	TOTAL LENGTH RECOVERY	rg 0 %	OEPTH IN FÉET	GRAPH LOG	U S C S	SOIL / ROCK IDENTIFICATION	DRILLER' NOTES
										-		
	1		11			1		40 -		-		
					-			i - tra			109-6	
9	43,0	44.5	5	6	8	16'`					CIA+ BR- wet-med to how plasticity	
								111		CL		
								=	20	100	Bostom 10"	
		-	-		-						Clayer SAND- BA- SATURATED	
											100 70 FINE ONTO CUAR C	
	1							l nu		sc		
10	48.0	49.5	5	io	16	18"					CINYEY SAND- BU- SATURATE	
	11.4-	1						-			QUANTZ	
-	-		1	-			-	1		SC		
								30		-		
			-	•					1			
11	53,0	54.5	12	15	15	16"					SAND- BR- SATURATED	
		1	i	1	1						QUARTZ- med TO Fine Gamm	
		1								SP		
				-				i i i i				-
		-	-		-			-		-		
			-	-		-					SAND- BE- QUARTZ - SATURA	red
12	58.0	59.5	12	15	23	15"		-			up TRACCOF PerGANJEI	_
			-			-				Sw		
(-1)								10 -		-		1

Jos I Comp Proj	NO				-			L	.00	5 01	BORING No. 2-12-1 DATES	hamed MW
Loc	ATION	F BORIN	G.						-	1	CASING USED SIZE DRILLING	
								-	-		BORING BEGUN BORING COMPLETE	D
Tim	E									+	GROUND ELEVATION REFERRED	ro
DAT	٤		_						+	1	FIELD PARTY	D. Rig
SAMPLE Number	SAI OE IN FRON	PLE PTH FEET TO	S" PEI RE B	TANDA NETRA SISTA	ARD ATION ANCE / 6	TOTAL LENGTH RECOVERY	*ao %	DEPTH IN FEET	GAAPH LOG	о с о с о с	SOIL / ROCK IDENTIFICATION	DRILLE
-	-		1	-	-	-	-	60		-		
								-				
	111							-				
-	1	1		-	1	1				-	SAND- BR- SATURAT-d	
13	63,0	64.5	8	10	12	10"	-	3			med TO Fine GRAIN - QUARTY	
										CP		-
										1		1
	-		-	-	-	-	-	111				
										-		
				1	1							
	-	-		-				TIL		_		
14	68.0	69.5	8	10	15	14"		TT T			Reaction to Hel	
			1		1							
-			-	-	-		-	111				
				1	1			70	- 9			
				1	1		1	1111			-	
	1			i	1			- FIT				
_			-	-								
15	73.0	74.5	6	10	16	12"	1		1	_	Sanda Ray Day 57	-
		1	1	:	1	1	1		1	1	100 % Fire GAAM	red
				-	1		-					
	2.00	i							Ì	1		
				1				11				
-					-		4	1				
	-		_				_	TIT	t	2.5		
11	780	740	6	14	20	15"		E	-	-		
	1010	110							ł		RAME AS 15	
							_	111	I			
								T	+	-		
	6"x 3	5.25 H	SA					-	ł			
	HW C	ASING A		ER 4								
	NW (CASING		3					_	-		
17	SW	CASING		6							RECORDER	

	1	
	11	
	1/11	,
	-/ M/	
0	1 10	
~	/	

DOS N Compa Proje Coord	0			_				L	0G	OF	BORING BORING NO 21 ²⁴ Date Type of Sanples: SPT 3" Tube	Renamed MW-8
Loc	TION O	BORIN	G 1							1	CASING USED SIZE DRIL	LING MUD USED
WAT	ER LEVI	EL					-		-		GROUND ELEVATION REFER	RED TO
TIM	E									1		DATU
DAT	E				-	-	-		-	1	FIELD PARTY	Rig
SAMPLE Number	SAM DEF IN F FROM	PLE PTH VEET TD	ST PEN RES BL	ANOA ETRA SISTA	RD TION NCE / 6"	TOTAL LENGTH Recovery	rq0 %	DEPTH IN FEET	GRAPH LOG	u s c s	SOIL / ROCK IDENTIFICATION	DRILLER'S NOTES
								80			•	
_		-					-	- Inter				_
17	020	ous	1/	57	47	10'		. 11				
	00,0	04,0	16		15			- In I		-	SATURATEd - QUARTZ- 1" MAX Size - AnovIAR ?	
								- Inter		GM		-
-	-	-								-		_
10	00 0	00 <		14	15	17"		- The second		_	Saud. Re Carriero	
to	00.0	01.5		11				1111			TARCE DE FIRÉS-STRANS REACTION TO HOL - TRACE	-
								90-		CW	OF Fines	_
-	-	-	-									
19	93.0	94.5	10	14	16	14"				_	SAME AS 18"	
		-						untu		_		
								hund			STOPped Hole 96.1 INSTALLED WELL	
						-	-	milu				
	6"x :	3.25 H	SA				-	1				

.

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-10

Sheet 1 of 2

Date(s) Drilled	12/10/15			Logged E	Becky Smolenski	Checked By	Mike Wagner
Drilling Method	Rotosoni	C		Drilling Contractor F	Frontz Drilling	Total Depth of Borehole	65.0 feet
Date of Ground Measurement	water12/21/	15		Sampler S	Sonic Sleeve	Surface Elevation	509.36 feet, msl
Depth to Groundwater	52.5 ft bg	S		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	512.18 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack	#5 Silica	Sand		Well Completio at Ground Surfa	n ace Riser, With locking cap and p	rotective casing.	
Comments							

Project Location: Zimmer Station

Project Number: 60442412

Monitoring Well MW-10

Sheet 2 of 2

DYNEGY ZIMMER ZIMMER STATION CCR WELLS GPJ 4/19/16

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-11 Sheet 1 of 2

Date(s) Drilled 1	2/2/15		Logged By	ecky Smolenski	Checked By	Mike Wagner
Drilling F	Rotosoni	C	Drilling Contractor	rontz Drilling	Total Depth of Borehole	64.0 feet
Date of Groundwa Measurement	^{ater} 12/21/	15	Sampler S	onic Sleeve	Surface Elevation	509.18 feet, msl
Depth to Groundwater	51.5 ft bg	s	Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	508.87 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches) 2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack #	5 Silica	Sand	Well Completion at Ground Surfa	Riser, With locking cap and p	rotective casing.	
Comments						

Project Location: Zimmer Station

Project Number: 60442412

Monitoring Well MW-11

Sheet 2 of 2

DYNEGY ZIMMER ZIMMER STATION CCR WELLS GPJ 4/19/16

COMPA PROJE	NY <u>N</u> CT Z	EP mm N. S	e K. 940	Pli W	1~1 - 5	20		L	oc - - 1	OF	BORING Ren: Boring No. <u>7-11</u> Date <u>4-26-89</u> Si Type of Samples: SPT <u>7</u> 3" Tube Casing used <u>7</u> Size <u>UM</u> Drilling m	amed M «EET <u>/_</u> 0 CORE UO USED
	R LEVE		Floc 28.0 1:00	2 d p	plai	n Mi	O NI I T	oring	w	11	BORING BEGUN 4-26-89 BORING COMPLETED GROUND ELEVATION 511.1 REFERRED T FIELD PARTY HOWCII - DAMST	0 <u>4-27-</u> 0 Ric
SAMPLE Number	SAM DEP IN F FROM	Р L E Т H E E T T O	ST PEN RES BL	ANOA ETRA SISTA.	R 0 T 10 N NC E / 6	TOTAL LENGTH RECOVERY	ROD %	DEPTH IN FEET	GRAPH LOG	USCS	SOIL / ROCK IDENTIFICATION	DRILL
		-1						luutu				
	25	4.0	2	5	8	15"		Internet		1	Clay- BR- moist - med to Low plasticity	
								- Innte				
2	7.5	9.0	3	5	8	18.		- Indiana			SAME AS 1	
								10-				
3	125	14.0	3	4	5	18.					Surf CIAY - Multi-coloned Br med to how plasticity	
			1									
4	17.5	19.0	3	4	5	18					SAME AS L	
	6" x	3.25 H	HSA			r		20			·	

Joa N Compa Proje	DA NO ACP CIVIL END DEMPANY LOG ROJECT DORDINATES LOCATION OF BORING:										BORING Ren BORING NO. Z ¹¹⁷ DATESH	amed MW	
Cooro											TYPE OF SAMPLES: SPT 3" TUBE CORE		
Loca											CASING USED DRILLING MUD USED DRILLING MUD USED		
WATE	A LEVE					_				1	GROUND ELEVATION REFERENCE TO		
TIME	Тіме											DA	
DATE									_		FIELD PARTY	Rig	
SAMPLE Number	SAMPLE DEPTH IN FEET		STANOARO PENETRATION RESISTANCE				OEPTH IN	APH LOG	LAPH LOG	SOIL / ROCK IDENTIFICATION	DRILLEF		
	FRON TO		BLOW / 6"			10		ur G	1				
						1				-			
	-		-		1	1		20-					
							-				.464		
								. 3			707		
5	22.5	24.0	2	3	4	19"				-	Clay- Yellowish BR- MOIST TO		
										1	Wet- med TO Low PLASTICITY		
				-	-	-	-			106	Retter O'		
			1.	1-							Clay- GRAY- Wet- med to		
				1						1	Low PLASTICITI		
	_				-		· · · · · ·			_	,,		
			-	1.0				- E	1	cu			
				-	-					-			
6	275	29.0	2	3	3	19"		E		-	ElAt- GARL WET med To		
	A 11.5		10	1	1	1					Low PLASTICITI		
		-				-	_						
								=		12			
	-		-	-		-		-		-			
					1			-		-			
					1	1		10					
					1	1			1				
					1	1.00		=	1	-			
1	325	34.0	1	2	3	18.	-		1	-	SAME AS 6		
			1.0							-			
	1	1	1	1	i	1				-			
		1											
			1	1	1			1					
				-	-	-		-		-			
					1	1 - 1		1	1	-			
-	-			1	1	-				-			
8	37,5	39.0	20	26	12	16"		-			SANd + GRAVE - GRAJ-BA-		
								3			SAFURATEd - QUARTZ- Rounded		
			-		1	-				-	12"MALSIES - ul Fines		
						1.1		5		100			
				-		-	-	-		61			
	6.0				-			1 3	1	-			
	6"x :	5.25 F	ISA					10-	1	-			
	HW CASING ADVANCER 4"												
1.1-	NQ CORE ROCK												
	NW CASING 3"												
OMPA Roje	0 NY CT			_		_		L	0G	OF	BORING Rena Rena Boring No. 2117 Date SH	amed MW-1	
------------------	----------------------------	------------------------	------------------------	------------------------	--------------------------	-----------------------------	----------	---------------------	-----------	---------	--	--------------------	
CORO	INATES					-			-	,	TYPE OF SAMPLES: SPT3" TUBE CASING USED SIZE DRILLING M		
LOCA	TION OF	Boring	5:								BORING BEGUN BORING COMPLETED		
WAT	R LEVE	L		-							GROUND ELEVATION REFERRED TO	°	
DAT											FIELO PARTY	RIG	
SAMPLE Number	SAM DEP IN F FRON	PLE TH EET TO	ST PEN RES BL	AN OA ETRA SISTA	RO TION NCE / 6	TOTAL LENGTH RECOVERY	rq0 %	OEPTH IN FEET	GRAPH LOG	U S C S	SOIL / ROCK IDENTIFICATION	DRILLER'S NOTES	
						-		40					
9					1.0	15 4	-						
1	925	44,0	10	15	13					SW	SAND- BR- GUAR I- MOIST		
										_			
-			-	-				1 du					
10	47.5	44,0	8	12	17	12"					SAND. BR- QUART - SATURA	r d	
								1		sP			
								- Internet				1	
								50					
11	52.5	54.0	15	17	10	14"				_	SAND + GARYEL- BA-SATJAATED QUARTZ- Rounded- 1"MAX Siz	٢	
-			i							GM	Her		
								Ind					
_													
12	57.5	59.0	12	14	16	15"		indu i			SAND- BR- SATURATED. QUARTZ- TRACE OF PEA GRAVE		
								hun		SP	LIMARY INTRUITION IN MED		
_	6"x :	5.25 H	SA					60-		-			

.

Coord							_	L	0G 	OF	BORING Rer Boring No. <u>7-117</u> Date s Type of Samples: SPT 3"Tube	HEET OF _
LOCA	TION OF	BORING	-						-	É.	CASING USED SIZE DRILLING N	UD USED
MATE							_		-		BORING BEGUN BORING COMPLETER	0
TIME	ALEVE					-	-		-		GROUND ELEVATION REPERRED T	D
DATE								_			FIELD PARTY	Rig
SAMPLE Number	SAM OEP IN F FRON	PLE TH EET TO	ST PEN RES BL	ANDA ETRA SISTAI	R D T 1 O N N C E / 6	TOTAL LENGTH Recovery	rq 0 %	DEPTH In Feet	GRAPH LOG	u s c s	SOIL / ROCK IDENTIFICATION	DRILLEF
								40_				
								ġ				
13	62.5	64.0	16	17	11	13"		udhu			GRAVELLY SITTY SAND- BR- SATURATEd- QJANTZ- 74"	
											MAK SIZE - STRONG REALTION	
14	67.5	64.0	29	39	31	16"		- Hereit			SANd+ GRAJE - BA. SATUANTE	/d
	<u> 6. 1</u>			-							FINCS - STRONG REACTION	
-				-		-		i dru				
					-	-		70-				
15	72,5	74.0	12	28	40	Ø.		-			CLAYEY SANd + GRAVEL BR. SATURATEd - 1"MAX Size	
				1	İ					1.1	Renction TO NeL	
								1				1
16	77.5	79.0	14	30	38	9"		tint.			SAME AS 15	
		-			-	-	-	-				
			-	-	-			-				
	6" x HW (3.25 H	I S A Aovan	L	<u>ا</u>			80-				

NOJEC DORDI LOCAT WATE TIME DATE DATE UNITE	TIDN OF R LEVE SAM D E P IN F FROM	BORING L PLE TH EET TO	STI PEN RES OL	ANDA ETRA SISTA OW	RD TION NCE	AL GTH VERY	RQD				BORING NO. 2" DATE TYPE OF SAMPLES: SPT3" TUBE CASING USEDSIZEDRI BDRING BEGUNBORING COM GROUND ELEVATION REFE	SHEET 5 OF 5
DORDI DOAT	NATES	BORING L PLE T H E E T T O	ST PEN RES BL	ANDA ETRA SISTA OW	RD TION NCE	AL GTH VERY	RGD		-		TYPE OF SAMPLES: SPT3" TUBE CASING USEDSIZEDRI BDRING BEGUNBORING CDA GROUND ELEVATION REFE	CORE
LOCATA	R LEVE SAM DEP IN F FROM	BORING L PLE TH EET TO	STA PENI RES BL	ANDA ETRA SISTA OW	R D TION NCE	AL GTH VERY	RQD				BORING BEGUN BORING CON GROUND ELEVATION REFE	
WATE E BOATE E	R LEVE SAM DEP IN F FROM		ST PEN RES BL	ANDA ETRA SISTA OW	R D TION NC E	AL 67H Very	RQD				GROUND ELEVATION REFE	
TIME E BOATE	SAM DEP IN F FROM 825		STA PENI RES BL	ANDA ETRA IISTA OW	RD TION NCE	AL GTH VERY	RQD			1		RRED TO
DATE DATE	SAM DEP IN F FROM 825	PLE TH EET TO	ST/ PENI RES BL	ANDA ETRA ISTA OW	RD TION NCE	AL GTH Very	RQD					DAT
NUMBER 17	SAM DEP IN F FROM 825	PLE TH EET TO	STA PENI RES BL	ANDA ETRA ISTA OW	RD TION NCE	AL GTH Very	RQD			1	FIELD PARTY	RIG
NUMBER NUMBER	DEP IN F FROM		PENIRES	ETRA ISTA OW	TION NCE			DEPTH	.0	5	5011 / 8000	
17	IN F FROM		RES	OW	NCE	1- 7 0	-	IN	Ŧ	U		NOTEC
/7	825				/ 6"	TO LEI RECI	%	FEET	GRAP	2	IDENTIFICATION	NOTES
17	825				T							
17	82.5				-	-	-	80-		-		
17	82.5							3				
11	845	GULA	0		12	11"				-	Consulty Condo Ro Sat	an n-d
	1 T.	840	0	11	15	11		-		-	Diga 52 State Size P	ind. d
							(-)				ud Finis + Black Lismit	C
				-	1			1 3	1		STRONG REACTION TO HEL	
					12			1	1	1		
2.0										1.00		
			-									
	1							1 3			the second s	
				-	-					-		
10	020	00-		1.	1.1	14"				-	Contract Restant	2
18	81.5	84.0	12	11	14	13			1	-	GRAVELLY SALA - BR. SATURE	
			1-1	1.					-	-	COARIC ADD DEC - 14 MA	n'm
	1		-	-	-	-	-			-	To HeL	
			(-)								() 0 1 . C =	
	-			1	i		1	1 3	E	-		
	1				1	-	1					
	1		1		1			1	Ē	-		
			-	-	1	-	-		2	-		
				1	1				1	-	Strand Nole- 899 AV	it l
		-	-	-	-	-	-	-	1	-	Biopped Note Bill IN	<u>a</u>
			· · · · ·	1					1	-	INSTATIE & COS WELL	
-	1	1	1	1	1	1	1	1 3	111	1		
			-		1							
			1	1		1	1	1	-			
				1.00	-	1		1 3		-	1	
								1 3		-	· · · · · · · · · · · · · · · · · · ·	**
_				-		-	-			-		
			1						F	-	ان الاست. الاست.	
-	-	-	-	-	-	-	-	1 3	-	-		
	1.1					1			=	-		
-	1	-		1	1	1	1	1 -	1			
									Ξ			
1	1			1	1		1	1 1	7			
			1		-	-	-	-	T	L		-
	6"x	3.25	ADVAN		4"			-				
	NO	COAF	Rock	CEN .				-		1		
	NW	CASING										

а 19

ROJE	NY RE	р м- 3.	EK 870	Pla E-	WT 30			L	.0G	OF	BORING Rer BORING NO. 2124 DATE 4-20-89 S TYPE OF SANPLES: SPT V 3" TUBE	named MW-8 HEET <u>/</u> of <u>5</u>
_0C A	TIDN D	BORIN	Floo	1 010	in .	mon	TOR		115		CASING USED SIZE DRILLING N BORING BEGUN 4-20-79 BORING COMPLETE	100 USED
WATI	ER LEVI	EL 2	8.5	a fia		11010	1000	Ju.	113		GROUND ELEVATION SHIL REFERRED	
TIME		10	:00	5-01	-						FIGLO PARTY Harry H - Dars T	DATUN
DATI		19	-20-	89			-				FIELD FART NOLDEN - VARST	Ric <u>75</u>
SAMPLE Number	SAN DEI IN F FRON	PLE TH TEET TO	ST PEN RES BL	ANDA ETRA SISTAI	RD TION NCE / 6	TOTAL LENGTH RECOVERY	RQ D %	DEPTH IN FEET	CRAPH LOG	U S C S	SOIL / ROCK IDENTIFICATION	DRILLER'S NOTES
-								ļ				
1	30	4.5	4	5	5	0		opto			Lime store Road base	
1								- Im				
								1				
2	0.	0.0	70	10	42	1.7"					Said Roy marine Oran TZ	-
		C , P	10		76	16		hut		sP	STRONG REACTION TO HOL	
-		1			+			10 -				
3	13,0	14.5	16	39	5%	14					CLAYEX SAND BA. MOIST DUARTZ- TANCE OF GRAVEL	
								-		5°C	STRONG REACTION TO HOL	
							-					
4	IRA	19.5	17	29	45	16"		- Andrew			Sand- BR- mail - STRONG	
								Inter		50	LEACTION TO HEL- 90%0 FIRE GRAIN - QUARTZ	
	6"×	3.25 H	SA			-		20-		F		
	HW NO	Casing Core f	ADVAN lock	CER 4		-		3				

...

OB N	D								.0G	OF	BORING No. Z-124 DATES	amed MW-8
ORD	NATES	Doein		_	_				-	1	CASING USED SIZE DRILLING N	
LUCA			••								BORING BEGUN BORING COMPLETE	0
WATE	ALEVE									1	GROUND ELEVATION REFERRED 1	DATU
DATI]	FIELD PARTY	Rig
SAMPLE Number	SAM DEP IN F FROM	PLE TH EET TO	ST PEN RES BL	ANDA ETRA SISTA DW	RD TION NCE / 6"	TOTAL LENGTH RECOVERY	rg d %	DEPTH IN FEET	GRAPH LOG	r s c s	SOIL / ROCK IDENTIFICATION	DRILLER'S NOTES
										_		
								20				
				-	-	-	-	-		-		
5	23.0	24.5	12	19	35	15"	_	1			Sand- BR- moist. STRong	
								3		-	ReneTION TO HEL QUARTZ	
-											BUTU FIRE GRIFFIE	
			-	-	-		1	n e		8		
				2	-					-		
								-				
-	1000	-		-	-	-		1		-		-
6	28.0	29.5	5%		1	6"	-	-		1	SANd BR. SATURATEd -	
										-	QUARTZ WS BROKEN Lime STOM	
					1			3			TO HEL-	
_					-	-		30		SP		
									1			
										-		
		-		-	1					-		
7	33,0	34.5	18	15	21	114		-			Clay- BR- Moist - med to	
			İ		Ì	1		3		-	Low plasticity	
								3		a		
-		-	-		-			-		-		1
								_				
								-		-		
-												
8	38.0	39.5	7	9	12	16"		-		-	SHARE AS - 7 TRACE OF	
										-	V-FINC SMAG	
					i					_		
-	6"x	3.25 H	I SA		-	-		40-	1	-		
	нж с	CASING	ADVAN	CER 4	۲ "	-						1 I
	NQ	CORE F	OCK			-						

·...

Note: South No. 2^{-L} (Dir	OB NO	D			-				L	OG	OF	BORING	amed MW-8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ROJE	ст					_			-		BORING NO. Z-12 DATE SH	LET <u>3</u> OF 1
$ \begin{array}{c cccc} CCcccccccccccccccccccccccccccccc$	DORO	NATES			_					-		TYPE OF SAMPLES: SPT 3" TUBE	CORE
WATCH LEVEL Doint Econ Boint Econ<	LOCA		BORING									CASING USED SIZE DRILLING NU	0 USE0
WATCH LEVEL STANDARD $z \leq nco$ GEVENTION ALFERNED TO 3 $z = 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1$												BORING BEGUN BORING COMPLETED	
Index Standardo $z \in Reconstruction z \in Rec$	WATE	RLEVE	<u> </u>									GROUND ELEVATION REFERRED TO	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(IME										8	Entre Danne	DAT
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	UATE		1			-				_		FIELD PARTY	RIG
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \bigg $ \\ \end{array} \\ \end{array} \\ \end{array} \bigg \\ \end{array} \\ \end{array} \\ \end{array} \bigg \bigg \\ \end{array} \bigg \bigg \\ \end{array} \bigg \bigg \bigg \\ \end{array} \bigg \bigg \\ \end{array} \bigg \bigg \bigg \\ \end{array} \bigg \bigg \bigg \\ \end{array} \bigg \bigg \bigg \\ \end{array} \bigg \bigg \bigg \\ \end{array} \bigg \bigg \bigg \bigg \\ \end{array} \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \\ \\ \end{array} \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg \bigg	-							-	1		-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a a		PLE	PEN	ETRA	TION	JE E	RGO	OEPTH	2	6	SOIL / ROCK	DRILLER
$\frac{3}{2} \frac{1}{100} \frac{1}{10} \frac$	N D	IN F	EET	RES	SISTAI	NCE	NG NG	0/	111	Ĩ	ŝ		NOTES
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No No	FROM	TO		0 W	1	P L P	70	FÉET		2	I DEWINICA IION	NOTES
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	PRUM			T	T	-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-						40-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-				3	1 [
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									1. 3			109-6	
9 $43,0$ $44,5$ 5 6 8 $6^{\circ\circ}$ $3,0^{\circ\circ}$ $3,0^{$					1.1.1.1					1 [
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1		=			CIA+ BR- wet-med to how	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 48.0 49.5 5 10 16 18" 10 48.0 49.5 5 10 16 18" 16 1	9	43,0	44.5	5	6	8	16'	L	3			PLASTICITY	
C Better 10" Charge Sand Ba-SARMATCO Sand Ba-SARMATCO Sand Ba-Sartua To Fire Gannic Sand Ba-Sartua To Fire Gannic <											11.		
Boltom 10" Clayer Sand Ba SARAART Clayer Sand Ba SARAART Clayer Sand Ba SARAART Ko To Price Gaam . Quart I So Clayer Sand Ba SARAART Clayer San	_								-		CL		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									2		800	BOTTOM 10"	
$ \frac{10}{10} + 8.0 + 9.5 \\ \frac{10}{10} + 8.0 + 9.5 \\ \frac{10}{10} + 8.0$			1		-		1.1		3		1	CLAYEN SAND- BA- SATURATED	
10 48.0 49.5 5 10 16 10 16 10				-					3			100 % Fine GRAM - QUARTZ	
10 48.0 49.5 5 10 16 10" 10 48.0 49.5 5 10 16 10" 10" 10 10 10 10" 10" 10" 10" 10" 10" 10 10 10"				1000	-		· · · · ·						
10 48.0 49.5 5 10 16 15" 10 49.5 5 10 16 15" 0 16 16" 0 0 17" 50 10 16 16" 16" 16" 10" 16" <td< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td>6.00</td><td></td><td>3</td><td></td><td>sc</td><td></td><td></td></td<>		1					6.00		3		sc		
10 48.0 49.5 5 10 16 15" 10 14.5 5 10 16 15" 11 53.0 54.5 12 15 15 16" 12 58.0 59.5 12 15 23 15" 60 - 6" x 3.25 HSA					-		-		1 64				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 1			1					1 2		-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	48.0	49.5	3	10	16	18"		-		-	Clayet SAND- BR- SATURATED	
50- 50- 50- 50- 50- 50- 50- 50-	10								1 3		-	QUARTZ	
1/1 50- 1/1 53.0 54 1/2 58.0 57.5 1/2 58.0 57.5 1/2 58.0 57.5 1/2 58.0 57.5 1/2 58.0 57.5 1/2 58.0 57.5 1/2 58.0 57.5 1/2 58.0 57.5 1/2 58.0 57.5 1/2 58.0 57.5 1/2 58.0 57.5 58.0 57.5 58.0 57.5 58.0					-		i inter		1 3		51	for the second se	
1/1 53.0 54.5 12 15 16" 1/1 53.0 54.5 12 15 16" 1/1 53.0 54.5 12 15 16" 1/2 58.0 59.5 12 15 23 15" 1/2 58.0 59.5 12 15 23 15" 6" x 3.25 HSA 60 60			6			1			8		R		
1/1 \$3,0 \$4,5 \$12 15 16" 1/1 \$3,0 \$4,5 \$12 15 16" 1/1 \$3,0 \$4,5 \$12 15 16" 1/1 \$3,0 \$4,5 \$12 15 16" 1/2 \$8,0 \$9,5 \$12 15 \$23 15" 1/2 \$8,0 \$9,5 \$12 15 \$23 15" 6"x 3.25 HSA 60 60 60	-				1	-	-	-	30	7			
11 53.0 54.5 12 15 16" 12 58.0 58.5 12 15 23 15" 6" x 3.25 HSA 60 60				1	•		1		1 3	3	-	1	
1/1 \$3.0 \$4.5 12 15 15 16" 1/1 \$3.0 \$4.5 12 15 15 16" 1/2 \$8.0 \$7.5 12 15 23 15" 1/2 \$8.0 \$7.5 12 15 23 15" 6"x 3.25 HSA 60 60	-				Î	1			i E				
11 53.0 54.5 12 15 15 16"									=				
11 53.0 54.5 12 15 15 16"						1	1000		1 -				
Quan 57 - mad To Fine Gamm 	11	\$3,0	54.5	12	15	15	164		1 -		1.02	JAND- BR- SATURATED	
50 512 58.0 59.5 12 15 23 15" 60 60 60 60 60 60 60 60 60 60		i	1	i	i	1			1 :			QUARTZ- med TO Fine Gamm	
50 50 50 50 50 50 50 50 50 50			-						-				
12 58.0 59.5 12 15 23 15" 60 6"x 3.25 HSA 60 6"x 3.25 HSA 60 60 60 60 60 60 60 60 60 60					1				1 7		SP		
12 58.0 59.5 12 15 23 15" 60 6"x 3.25 HSA 60 6"x 3.25 HSA 60 60 60 60 60 60 60 60 60 60									3				
12 58.0 59.5 12 15 23 15" 60 6"x 3.25 HSA 60 6"x 3.25 HSA 60 6"x 3.25 HSA 60 60 60 60 60 60 60 60 60 60						1			1 3		-		
12 58.0 59.5 12 15 23 15" 60 6"x 3.25 HSA 50 60 60 60 60 60 60 60 60 60 6	1				1	1	-			1	_		
12 58.0 59.5 12 15 23 15" 60 6"x 3.25 HSA 58.0 59.5 12 15 23 15" 58.0 59.5 12 15 23 15" 60 60 60 60 60 60 60 60 60 60						1			3		-		
12 58.0 59.5 12 15 23 15" 60 6"x 3.25 HSA 58.0 59.5 12 15 23 15" 58.0 59.5 12 15					1-	-	-				-		
60- 6"x 3.25 HSA			100-			20	15"		1 3		-	SAND-BR- CUARTZ - SATURA	red
60- 6"x 3.25 HSA	2	58.0	57.5	12	15	2	12		-		-	MY TRACCOF (CABAAJE)	
6"x 3.25 HSA 60-									1 3	1	C		
60- 6"x 3.25 HSA 60-				-	-	1	-	-	1 -		DW		
6° x 3.25 H SA 60-			1						1 3	1	-		
		c"_	1 26 1	5 4	1	I	-		60-	1	-		
HW CASING ADVANCES 4"			5.25 H	. 3 M A 1994					1				

...

JOB N Comp Proje	10 ANY ECT				-	A 		L	.0G		BORING NO. 2-12 DATE	named MW
Loc	ATION	F BORIN							-	1	CASING USED SIZE DRILLING	CORE
						-			-		BORING BEGUN BORING COMPLETE	D
TIM	E						-				GROUND ELEVATION REFERRED	то
DAT	E								+	1	FIELD PARTY	DA
SAMPLE Number	S A I O E IN	PLE PTH FEET	S PE RE	TAN DA NETRA SISTA	ATION	TOTAL LENGTH RECOVERY	*a0 %	DEPTH IN FEET	AAPH LOG	r s c s	SOIL / ROCK IDENTIFICATION	DRILLER
-	PRON		-	LOW	1	-				-		
_		-				-		60_				
								1		-		
1	1		1					-		-		
1		-	-		-							
18	130	145	8	10	10	10"	1				SAND- BR- SATURATEd	4
15	60,0	64,3	0	10	14	10		- The			med TO FINE GRAIN - GUANTO	
				-			-	-		SP		
				11				111				
	-		-	-	-	-		11				<u></u>
								-				
-	1	-		-				111			6	
14	68.0	69.5	8	10	15	14"					Reaction to Hel	
			1		1							
-			-		-		-	-1-				
				1	1							
	5	1		i	1	1	1		1			
			-	-	1			T.I.	1			
									ł	-		
			,	1	i			E	1			1
15	73.0	740	6	10	16	12"			+	_	SAND- BR- QUARTZ. SATUR	ered
		1			Į		I		ł	-	100 10 Fire GAAM	
1		1		1	1		1		Ţ			
-	-		-		-		-		ł	-		4
								TIT	ł	-		
,				1		1	-		t			
	-				-		-	T	f	_		
16	78.0	74.5	4	16	24	15"		Ē	ł	-	Same at 15	
1		1							t		anme #2 13	
	-				1		_	LL.	E			
ł						Í	1		ł	-		
1	6"x 3	.25 H	SA						1			
	HW C	ASING A	DVANC	ER 4	. 1	1						
-	NQ C	ORE RO)C K	7			-			-		
	SW (CASING		6		-	-				Provense	

	n
	11
	1/11
	-/ M/
6	1 10
1	/-

JOB N Comp/ Proje	0			_	_				.0G	OF	BORING NO2124 DATE	Renamed MW-8
OORO	INATES				_	_			-		TYPE OF SANPLES: SPT	CORE
Loc	TION O	BORIN	G1							1	CASING USED DRILL BORING REGUN BORING COMP	LING MUD USED
WAT	ER LEVI			-							GROUND ELEVATION REFER	RED TO
TIM												DATU
DAT	E						-		-		FIELD PARTY	Rig
SAMPLE Number	SAM DEF IN F	PLE TH TEET TO	ST PEN RES BL	ANOA ETRA SISTA DW	RD TION NCE / 6"	TOTAL LENGTH RECOVERY	R00 %	DEPTH IN FEET	GRAPH LOG	U S C S	SOIL / ROCK IDENTIFICATION	DRILLER'S NOTES
											•	
-	-		-	-	-	-		80		-		
							1	-				
				1		1000		1 3				
_			-	-	-	-				-		
17	020	QUS	11	37	43	12		3			SITI Cand + Consul - Da	The second
	00,0	0 10	10	101	10	10		1 3			CATURATEd - BUREFZ- 1"	
_		1			1						MAX Size - AngulAR ?	
	1	1.000						Ξ		17		
-			-		-	-				GM		
							<u> </u>	3		-		
			-							1		
						1	1. J	3				
		00-	1.5		1.0			3				
18	88.0	84.5	11_	14	15	12	-				SAND- BR-SATURATEd-	
								3			Remetion to HOL- TARE	
			1		1	1	i				OF Fines	
_							-	90				
								1 =		sw		
-			-	i -	<u>;</u>					-		
								=				
9	93.0	94.5	10	14	16	14		-			SAME AS 18"	
					Ì		5 1	1				
					1							
				1								
								1				4
-				-		-				-		
				1								
							10				STOPped Hole 96.1	
		·									INSTALLES WELL	
				1				Ξ				
			-				-	4				
								E				
	6"x 3	3.25 H	SA							-		
	HW C	ASING A	OVANO	CER 4	"				6.3			
_	NQ	CORE R	OCK				_			_		
	NW	LASING		3						1.1		

-

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-12 Sheet 1 of 2

Date(s) Drilled	11/20/15			Logged By	Becky Smolenski	Checked By	Mike Wagner
Drilling Method	Rotosonic	;		Drilling Contractor	Frontz Drilling	Total Depth of Borehole	64.0 feet
Date of Ground Measurement	^{lwater} 12/08/′	15		Sampler Type	Sonic Sleeve	Surface Elevation	509.34 feet, msl
Depth to Groundwater	53.19 ft bg	IS		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	511.92 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of Sand Pack	#5 Silica S	Sand		Well Completic at Ground Surf	Riser, With locking cap and p	rotective casing.	
Comments							

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-12

Sheet 2 of 2

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-13 Sheet 1 of 2

Date(s) Drilled 11/2	4/15		Logged By Bo	ecky Smolenski	Checked By	Mike Wagner
Drilling Method Rota	sonic		Drilling Contractor	rontz Drilling	Total Depth of Borehole	54.0 feet
Date of Groundwater Measurement	2/08/1	5	Sampler Se	onic Sleeve	Surface Elevation	497.21 feet, msl
Depth to Groundwater 39.5	1 ft bg:	s	Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	499.4 feet, msl
Diameter of Hole (inches) 6.	.0	Diameter of Well (inches) 2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of #5 S Sand Pack #5 S	ilica S	and	Well Completion at Ground Surface	Riser, With locking cap and p	rotective casing.	
Comments						

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-13

Sheet 2 of 2

DYNEGY ZIMMER ZIMMER STATION CCR WELLS GPJ 4/19/16

1

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-14 Sheet 1 of 2

Date(s) Drilled 1	2/9/15			Logged Be	ecky Smolenski	Checked By	Mike Wagner
Drilling R Method	Rotosonia	;		Drilling Contractor Fr	ontz Drilling	Total Depth of Borehole	60.0 feet
Date of Groundwa Measurement	^{ater} 12/18/	15		Sampler Type Sc	onic Sleeve	Surface Elevation	502.06 feet, msl
Depth to Groundwater	46.27 ft bç	js		Seal Material	Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	503.81 feet, msl
Diameter of Hole (inches)	6.0	Diameter of Well (inches)	2	Type of Well Casing	Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of # Sand Pack	↓5 Silica \$	Sand		Well Completion at Ground Surfac	ce Riser, With locking cap and p	rotective casing.	
Comments							

Project Location: Zimmer Station Project Number: 60442412

Monitoring Well MW-14

Sheet 2 of 2

Project: Dynegy Project Location: Zimmer Station

60442412

Project Number:

Monitoring Well MW-15

Sheet 1 of 2

Date(s) Drilled 11/25/15	Logged By	Logged By Becky Smolenski		Mike Wagner
Drilling Rotosonic	Drilling Contra	ctor Frontz Drilling	Total Depth of Borehole	62.0 feet
Date of Groundwater Measurement	Sample Type	er Sonic Sleeve	Surface Elevation	508.04 feet, msl
Depth to 52.77 ft bgs	Seal M	aterial Hydrated 3/8-inch Bentonite Chips	Top of PVC Elevation	510.58 feet, msl
Diameter of Hole (inches) 6.0 Diameter of Well (inches)	2 Type o Well C	f Schedule 40 PVC	Screen Perforation	0.010-Inch
Type of #5 Silica Sand	Well C at Grou	Well Completion at Ground Surface Riser, With locking cap and protective casing.		
Comments				

Project Location: Zimmer Station Project Number: 60442412 Monitoring Well MW-15

Sheet 2 of 2

APPENDIX C3 – MAPS OF THE DIRECTION OF GROUNDWATER FLOW

EXISTING MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED AUGUST 31, 2016

ed By:	DYNEG	Y	Z Clermon	immer Station t County, Ohio		
		FIGURE 1				
	GROUNDWATER SURFACE MAP-					
	AUGUST 31, 2016					
	COAL PILE RUNOFF POND (UNIT ID: 125)					
	CCR SAMPLING AND ANALYSIS PLAN					
	DATE	REV NO.	DWG. BY	CHKD. BY		
	12/16/16	0	ALW	MAW		
	JOB NO. 604	142412		AECOM		

EXISTING MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED SEPTEMBER 26, 2016

ed By:	DYNEG	Y Y	Clermor	Zimmer Station ht County, Ohio		
		FIGURE 1				
	GRO	GROUNDWATER SURFACE MAP-				
		SEPTEMBER 26, 2016				
	COAL PIL	COAL PILE RUNOFF POND (UNIT ID: 125)				
	CCR SA	CCR SAMPLING AND ANALYSIS PLAN				
	DATE	REV NO.	DWG. BY	CHKD. BY		
	12/15/16	0	ALW	MAW		
	- JOB NO. 604	442412		AECOM		

EXISTING MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED OCTOBER 12, 2016

ed By:	DYNEG	Y		Z Clermon	immer Station t County, Ohio	
		FIGURE 1				
	GROUNDWATER SURFACE MAP-					
	OCTOBER 12, 2016					
	COAL PILE RUNOFF POND (UNIT ID: 125)				T ID: 125)	
	CCR SA	CCR SAMPLING AND ANALYSIS PLAN				
	DATE	REV NO.	C	DWG. BY	CHKD. BY	
	12/16/16	0		ALW	MAW	
	JOB NO. 604	442412			AECOM	

EXISTING MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION

456.65 GROUNDWATER ELEVATION (FEET, MSL), MEASURED NOVEMBER 16, 2016

ed By:	DYNEG	Y Y	Clermo	Zimmer Station nt County, Ohio		
		FIGURE 1				
	GRO	GROUNDWATER SURFACE MAP-				
		NOVEMBER 16, 2016				
	COAL PIL	COAL PILE RUNOFF POND (UNIT ID: 125)				
	CCR SA	CCR SAMPLING AND ANALYSIS PLAN				
	DATE	REV NO.	DWG. BY	CHKD. BY		
	12/16/16	0	ALW	MAW		
	- JOB NO. 604	442412		AECOM		

EXISTING MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 12, 2016

ed By:	DYNEG	Y Y		Z Clermon	immer Station t County, Ohio	
		FIGURE 1				
	GRO	GROUNDWATER SURFACE MAP-				
		DECEMBER 12, 2016				
	COAL PIL	COAL PILE RUNOFF POND (UNIT ID: 125)				
	CCR SA	CCR SAMPLING AND ANALYSIS PLAN				
	DATE	REV NO.	C	DWG. BY	CHKD. BY	
	01/05/16	0		ALW	MAW	
	- JOB NO. 604	442412			AECOM	

EXISTING MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 8, 2017

ed By:	DYNEG	Y	Z Clermon	Zimmer Station t County, Ohio		
		FIGURE 1				
	GROUNDWATER SURFACE MAP-					
	MARCH 8, 2017					
	COAL PILE RUNOFF POND (UNIT ID: 125)					
	CCR SA	CCR SAMPLING AND ANALYSIS PLAN				
	DATE	REV NO.	DWG. BY	CHKD. BY		
	09/07/17	0	ALW	MAW		
	JOB NO. 604	142412		AECOM		

EXISTING MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION

465.65 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 8, 2017

ed By:	DYNEG	Y	Z Clermon	immer Station t County, Ohio	
	FIGURE 1				
	GROUNDWATER SURFACE MAP-				
	JUNE 8, 2017				
	COAL PILE RUNOFF POND (UNIT ID: 125)				
	CCR SAMPLING AND ANALYSIS PLAN				
	DATE	REV NO.	DWG. BY	CHKD. BY	
	09/07/17	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

EXISTING MONITORING WELL LOCATION

DOWNGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

➤ GROUNDWATER FLOW DIRECTION

462.42 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JULY 13, 2017

ed By:	DYNEG	Y	Z Clermon	Zimmer Station t County, Ohio	
	FIGURE 1				
	GROUNDWATER SURFACE MAP-				
	JULY 13, 2017				
	COAL PILE RUNOFF POND (UNIT ID: 125)				
	CCR SA	CCR SAMPLING AND ANALYSIS PLAN			
	DATE	REV NO.	DWG. BY	CHKD. BY	
	09/07/17	0	ALW	MAW	
	- JOB NO. 604	142412		AECOM	

Feet

Feet

Feet

400

0 100 200

DIRECTION

CCR MONITORED UNIT

CCR MONITORING WELL LOCATION
 GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, FT MSL)
 INFERRED GROUNDWATER ELEVATION CONTOUR
 GROUNDWATER FLOW DIRECTION
 SURFACE WATER FEATURE
 CCR MONITORED UNIT

200

400

Feet

GROUNDWATER ELEVATION CONTOUR MAP APRIL 9, 2020

ZIMMER D BASIN (UNIT ID: 121) AND ZIMMER COAL PILE RUNOFF POND (UNIT ID: 125) ZIMMER POWER STATION MOSCOW, OHIO RAMBOLL US CORPORATION A RAMBOLL COMPANY

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

→ GROUNDWATER FLOW DIRECTION

462.56 GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 29, 2015

NOTE- RISING OHIO RIVER CONDITIONS TO NEAR FLOOD STAGE

ed By:	DYNEG	Y		Z Clermon	immer Station t County, Ohio		
	FIGURE 1 GROUNDWATER SURFACE MAP-						
	DECEMBER 29, 2015						
	GYPSUM	RECYCLING	βP	OND (UN	IT ID: 124)		
	CCR SA	AMPLING AN	١D	ANALYSI	S PLAN		
	DATE	REV NO.	V NO. DWG. BY CHKD. B				
	08/04/16	0		ALW	MAW		
	JOB NO. 60442412				AECOM		

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 468.40 GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 16, 2016

NOTE- RAPID RISING OHIO RIVER CONDITIONS FOLLOWING RAPID DECENDING CONDITIONS FROM NEAR FLOOD STAGE

ed By:	DYNEG	Y		Z Clermon	immer Station t County, Ohio		
	FIGURE 1 GROUNDWATER SURFACE MAP- MARCH 16, 2016						
	GYPSUM	RECYCLING	ΒF	OND (UN	IIT ID: 124)		
	CCR SA	AMPLING AN	١D	ANALYSI	S PLAN		
	DATE	REV NO.	. DWG. BY CHKD. B				
	08/04/16	0		ALW	MAW		
	JOB NO. 60442412				AECOM		

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

→ GROUNDWATER FLOW DIRECTION

461.68 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 15, 2016

NOTE- STABLE OHIO RIVER CONDITIONS

ed By:	DYNEG	Z Clermon	immer Station t County, Ohio				
	FIGURE 1						
	GRO	GROUNDWATER SURFACE MAP- JUNE 15, 2016 GYPSUM RECYCLING POND (UNIT ID: 124)					
	GYPSUM						
	CCR SA	AMPLING AN	ND.	ANALYSI	S PLAN		
	DATE	REV NO.	REV NO. DWG. BY CHKD.				
	08/04/16	0		ALW	MAW		
	JOB NO. 604	142412			AECOM		

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

→ GROUNDWATER FLOW DIRECTION

455.20 GROUNDWATER ELEVATION (FEET, MSL), MEASURED SEPTEMBER 26, 2016

NOTE- STABLE OHIO RIVER CONDITIONS

ed By:	DYNEG	Y	Z Clermon	Zimmer Station It County, Ohio		
	FIGURE 1					
	GROUNDWATER SURFACE MAP- SEPTEMBER 26, 2016					
	GYPSUM	RECYCLING	G POND (UN	IIT ID: 124)		
	CCR SA	AMPLING AN	ND ANALYS	IS PLAN		
	DATE	REV NO.	DWG. BY	CHKD. BY		
	12/44/16	0	ALW	MAW		
	JOB NO. 604	142412		AECOM		

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- ➤ GROUNDWATER FLOW DIRECTION
- 455.44 GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 12, 2016

NOTE- SHORT-TERM FALLING RIVER STAGE DURING RISING LONG-TERM OHIO RIVER CONDITIONS

ed By:	DYNEG	Y	Z Clermor	Zimmer Station It County, Ohio		
	FIGURE 1 GROUNDWATER SURFACE MAP- DECEMBER 12, 2016					
	GYPSUM	RECYCLING	G POND (UN	IIT ID: 124)		
	CCR SA	AMPLING AN	ND ANALYS	IS PLAN		
	DATE	REV NO.	DWG. BY	CHKD. BY		
	01/05/16	0	ALW	MAW		
	JOB NO. 604	142412		AECOM		

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

→ GROUNDWATER FLOW DIRECTION

467.81 GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 8, 2017

NOTE- FALLING OHIO RIVER CONDITIONS FROM NEAR FLOOD STAGE

ed By:	DYNEG	Y	Clermo	Zimmer Station nt County, Ohio		
	FIGURE 1 GROUNDWATER SURFACE MAP- MARCH 8, 2017					
	GYPSUM	RECYCLING	G POND (UI	NIT ID: 124)		
	CCR SA	AMPLING AN	ND ANALYS	IS PLAN		
	DATE	REV NO.	DWG. BY	CHKD. BY		
	09/19/17	0	ALW	MAW		
	JOB NO. 604	142412		AECOM		

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

→ GROUNDWATER FLOW DIRECTION

465.09 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 8, 2017

NOTE- FALLING OHIO RIVER CONDITIONS

ed By:	DYNEG	Y	2 Clermor	Zimmer Station It County, Ohio			
	FIGURE 1						
	GRO	GROUNDWATER SURFACE MAP- JUNE 8, 2017					
	GYPSUM	RECYCLING	POND (UN	IIT ID: 124)			
	CCR SA	AMPLING AN	ND ANALYS	IS PLAN			
	DATE	REV NO.	DWG. BY	CHKD. BY			
	09/19/17	0	ALW	MAW			
	- JOB NO. 604	442412		AECOM			

DOWNGRADIENT MONITORING WELL LOCATION

UPGRADIENT MONITORING WELL LOCATION

WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)

→ GROUNDWATER FLOW DIRECTION

GROUNDWATER ELEVATION (FEET, MSL), MEASURED JULY 13, 2017

NOTE- STABLE OHIO RIVER CONDITIONS

ed By:	DYNEG	Y	Clermo	Zimmer Station nt County, Ohio		
	FIGURE 1					
	GROUNDWATER SURFACE MAP- JULY 13, 2017					
	GYPSUM	RECYCLING	G POND (U	NIT ID: 124)		
	CCR SA	AMPLING AN	ND ANALYS	SIS PLAN		
	DATE	REV NO.	DWG. BY	CHKD. BY		
	09/19/17	0	ALW	MAW		
	JOB NO. 604	142412		AECOM		

CCR MONITORING WELL LOCATION GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, FT MSL) INFERRED GROUNDWATER CONTOUR GROUNDWATER FLOW DIRECTION CCR MONITORED UNIT

ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP NOVEMBER 13, 2017

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

CCR MONITORING WELL LOCATION GROUNDWATER ELEVATION CONTOUR (0.5-FT CONTOUR INTERVAL, FT MSL) INFERRED GROUNDWATER CONTOUR GROUNDWATER FLOW DIRECTION CCR MONITORED UNIT

ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP MAY 9, 2018

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

CCR MONITORING WELL LOCATION **ZIMMER GYPSUM** GROUNDWATER ELEVATION CONTOUR (0.5-FT CONTOUR INTERVAL, FT MSL) INFERRED GROUNDWATER CONTOUR CCR RULE GF ZIMMI GROUNDWATER FLOW M DIRECTION CCR MONITORED UNIT

ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP MAY 9, 2018

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

÷

ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP MARCH 12, 2019

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

0 37.5 75 150

CCR MONITORING WELL ZIMME LOCATION GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, FT MSL) INFERRED GROUNDWATER CONTOUR GROUNDWATER FLOW DIRECTION CCR MONITORED UNIT

ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) GROUNDWATER ELEVATION CONTOUR MAP SEPTEMBER 10, 2019

CCR RULE GROUNDWATER MONITORING ZIMMER POWER STATION MOSCOW, OHIO

Ν

0 37.5 75 150

50

100 Feet

 CCR MONITORING WELL LOCATION
GROUNDWATER ELEVATION CONTOUR (0.5-FT CONTOUR INTERVAL, FT MSL)
INFERRED GROUNDWATER ELEVATION CONTOUR
GROUNDWATER FLOW DIRECTION
CCR MONITORED UNIT

GROUNDWATER ELEVATION CONTOUR MAP APRIL 9, 2020

> RAMBOLL US CORPORATION A RAMBOLL COMPANY

ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) ZIMMER POWER STATION MOSCOW, OHIO

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 463.65 GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 29, 2015

ed By:	DYNEG	Y	Z Clermor	Zimmer Station It County, Ohio	
	FIGURE 1				
	GROUNDWATER SURFACE MAP-				
	DECEMBER 29, 2015				
		D BASIN (U	NIT ID: 121))	
	CCR SA	AMPLING AN	ND ANALYS	IS PLAN	
	DATE	REV NO.	DWG. BY	CHKD. BY	
	08/04/16	0	ALW	MAW	
	JOB NO. 604	142412		AECOM	

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 469.30 GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 16, 2016

ed By:	DYNEG	Y		Z Clermon	immer Station t County, Ohio	
	FIGURE 1 GROUNDWATER SURFACE MAP-					
	MARCH 16, 2016					
		D BASIN (U	NIT	ID: 121)		
	CCR SA	AMPLING AN	ND A	NALYSI	S PLAN	
	DATE	REV NO.	D٧	VG. BY	CHKD. BY	
	08/04/16	0		ALW	MAW	
	JOB NO. 60442412				AECOM	

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 461.87 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 15, 2016

ed By:	DYNEG	Y		Z Clermon	immer Station t County, Ohio
	FIGURE 1 GROUNDWATER SURFACE MAP- JUNE 15, 2016 D BASIN (UNIT ID: 121)				
	CCR SA	AMPLING AN	١D	ANALYSI	S PLAN
	DATE	REV NO.	C	DWG. BY	CHKD. BY
	08/04/16	0		ALW	MAW
	JOB NO. 60442412				AECOM

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 456.53 GROUNDWATER ELEVATION (FEET, MSL), MEASURED SEPTEMBER 26, 2016

ed By:	DYNEG	Y		Z Clermon	immer Station t County, Ohio	
	FIGURE 1					
	GROUNDWATER SURFACE MAP-					
	SEPTEMBER 26, 2016					
	D BASIN (UNIT ID: 121)					
	CCR SA	AMPLING AN	ND A	NALYSI	S PLAN	
	DATE	REV NO.	DV	VG. BY	CHKD. BY	
	12/14/16	0		ALW	MAW	
	JOB NO. 60442412				AECOM	

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 7 GROUNDWATER ELEVATION (FEET, MSL), MEASURED DECEMBER 12, 2016

ed By:	Zimmer Statio Clermont County, Ohi												
	FIGURE 1												
	GROUNDWATER SURFACE MAP- DECEMBER 12, 2016												
		D BASIN (U	NIT	ID: 121)									
	CCR SA	AMPLING AN	ND A	NALYSI	S PLAN								
	DATE	REV NO.	DV	VG. BY	CHKD. BY								
	01/05/16	0		MAW									
	JOB NO. 604	142412			AECOM								

\Project\D\Dynegy\60442412 Miami Fort and Zimmer CCR 2015-2017\Data-Tech\TI\ZIM\ZIM PIEZ\basin d fig1_3-1

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 468.36 GROUNDWATER ELEVATION (FEET, MSL), MEASURED MARCH 8, 2017

ed By:	Zimmer Static Clermont County, Ohi												
	FIGURE 1												
	GROUNDWATER SURFACE MAP-												
	MARCH 8, 2017												
	D BASIN (UNIT ID: 121)												
	CCR SA	AMPLING AN	ND ANALYSI	S PLAN									
	DATE	REV NO.	DWG. BY	CHKD. BY									
	09/08/17	0	ALW MAW										
	JOB NO. 604	142412		AECOM									

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 466.54 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JUNE 8, 2017

ed By:	Zimmer Sta DYNEGY											
	FIGURE 1 GROUNDWATER SURFACE MAP- JUNE 8, 2017											
		D BASIN (U	NIT ID:	121)								
	CCR SA	AMPLING AN	ID ANA	LYSI	S PLAN							
	DATE	REV NO.	DWG.	ΒY	CHKD. BY							
	09/08/17	0	ALV	MAW								
	JOB NO. 604	142412			AECOM							

- UNIT BOUNDARY
- DOWNGRADIENT MONITORING WELL LOCATION
- UPGRADIENT MONITORING WELL LOCATION
- WATER TABLE CONTOUR (INFERRED FROM AVAILABLE MONITORING DATA)
- → GROUNDWATER FLOW DIRECTION
- 463.14 GROUNDWATER ELEVATION (FEET, MSL), MEASURED JULY 13, 2017

ed By:	Zimmer Sta DYNEGY												
	FIGURE 1 GROUNDWATER SURFACE MAP-												
	JULY 13, 2017												
		D BASIN (U	NIT ID: 121)									
	CCR SA	AMPLING AN	ND ANALYS	SIS PLAN									
	DATE	REV NO.	DWG. BY	CHKD. BY									
	09/08/17	0	ALW	MAW									
	JOB NO. 604	142412		AECOM									

Feet

Feet

Feet

400

0 100 200

DIRECTION

CCR MONITORED UNIT

CCR MONITORING WELL LOCATION
GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, FT MSL)
INFERRED GROUNDWATER ELEVATION CONTOUR
GROUNDWATER FLOW DIRECTION
SURFACE WATER FEATURE
CCR MONITORED UNIT

200

400

Feet

GROUNDWATER ELEVATION CONTOUR MAP APRIL 9, 2020

ZIMMER D BASIN (UNIT ID: 121) AND ZIMMER COAL PILE RUNOFF POND (UNIT ID: 125) ZIMMER POWER STATION MOSCOW, OHIO RAMBOLL US CORPORATION A RAMBOLL COMPANY

APPENDIX C4 – TABLES SUMMARIZING CONSTITUENT CONCENTRATIONS AT EACH MONITORING WELL

Analytical Results - Appendix III Zimmer Coal Pile Runoff Pond

Sample	Date	Boron, total	Calcium, total	Chloride, total	Fluoride, total	рН	Sulfate, total	Total Dissolved Solids
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
Background	Wells							
MW-1	12/30/2015	0.0720	155	48.5	0.200	7.2	90.1	544
MW-1	3/16/2016	0.0233	206	59.1	0.146	7.1	85.2	583
MW-1	6/16/2016	0.0389	154	59.6	<1	7.0	95.3	648
MW-1	8/31/2016	0.0431	168	73.4	<1	6.4	113	612
MW-1	9/26/2016	0.0349	160	64.9	<1	7.1	93.1	621
MW-1	10/12/2016	0.0634	156	79.2	<1	7.2	112	571
MW-1	11/16/2016	0.0304	162	57.7	<1	6.4	90.6	596
MW-1	12/13/2016	0.0322	165	52.4	<1	7.0	93.3	561
MW-1	3/9/2017	<0.08	150	58.2	<1	8.3	85.9	589
MW-1	6/8/2017	<0.08	171	65.5	<1	7.1	87.0	582
MW-1	7/13/2017	<0.08	144	61.3	<1	7.0	79.0	608
MW-1	11/13/2017	<0.08	150	53.1	<1	6.9	89.1	571
	5/9/2018	<1	157	71.0	<1	7.0	88.9	631
	3/1//2010	<0.08	163	02.7	<1	0.9 7.0	90.2	578 617
M\//-1	9/11/2019	<0.08	167	63.1	<1	7.0	90.2	637
MW-1	4/9/2020	0.123	170	80.5	<0.15	6.7	92.3	592
Downgradien	t Wells							
MW-3S	8/31/2016	0.109	194	<60	<1	6.9	371	860
MW-3S	9/26/2016	0.209	188	54 7	<1	6.9	338	830
MW-3S	10/12/2016	0.200	168	66.3	<1	6.0	328	779
MW/ 28	11/16/2016	0.0303	160	44.0	<1	0.9	320	706
10100-33	11/10/2010	0.0710	109	44.0	<1	7.5	200	700
MW-35	12/12/2016	0.0567	131	36.4	<1	6.7	179	559
MW 28	3/9/2017 6/9/2017	<0.08	139	37.2	<1	8.3	242	000 902
MW-35	7/13/2017	<0.06	208	69.5	<1	7.0	304	092
MW-3S	11/13/2017	<0.0304	127	33.8	<1	6.5	176	560
MW-3S	5/9/2018	<1	115	32.1	<1	6.7	151	568
MW-3S	9/19/2018	0.188	162	41.3	<1	6.7	251	720
MW-3S	3/15/2019	0.143	160	37.3	<1	6.9	199	683
MW-3S	9/11/2019	1.91	228	39.2	<1	7.6	532	1090
MW-3S	4/10/2020	1.03	221	43.0	<0.15	7.0	447	949
MW-16	8/31/2016	0.0506	143	41.8	<1	6.4	198	642
MW-16	9/26/2016	0.102	163	42.2	<1	6.8	173	639
MW-16	10/12/2016	0.0689	149	51.6	<1	7.2	172	609
MW-16	11/16/2016	0.0446	151	38.8	<1	6.4	168	628
MW-16	12/12/2016	0.0527	151	37.8	<1	7.0	175	612
MW-16	3/9/2017	<0.08	106	28.0	<1	8.5	121	484
MW-16	6/8/2017	<0.08	132	31.8	<1	7.1	155	541
MW-16	7/13/2017	<0.08	135	36.1	<1	7.2	161	605
MW-16	11/13/2017	<0.08	139	38.8	<1	7.0	169	592
MW-16	5/9/2018	<1	128	32.3	<1	7.0	145	571
MW-16	9/19/2018	< 0.08	153	38.5	<1	6.9	175	640
MW-16	3/15/2019	< 0.08	153	39.4	<1	7.0	160	621
IVIVV-16	9/12/2019	0.130	156	45.5	<1	6.8 6.0	187	686
10107-16	4/10/2020	0.0621	162	47.0	0.151	0.9	197	087

Analytical Results - Appendix III Zimmer Coal Pile Runoff Pond

Sample	Date	Boron, total	Calcium, total	Chloride, total	Fluoride, total	рН	Sulfate, total	Total Dissolved Solids
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
MW-17	8/31/2016	0.0584	128	36.3	<1	7.1	190	646
MW-17	9/26/2016	0.0757	147	32.0	<1	7.1	181	622
MW-17	10/12/2016	0.0478	126	39.5	<1	7.4	174	596
MW-17	11/16/2016	0.0447	142	38.7	<1	6.4	167	615
MW-17	12/12/2016	0.0569	145	37.6	<1	7.2	184	608
MW-17	3/9/2017	<0.08	112	<30	<1	8.4	159	528
MW-17	6/8/2017	<0.08	135	31.7	<1	7.1	182	602
MW-17	7/13/2017	<0.08	137	70.2	<1	7.1	390	626
MW-17	11/13/2017	<0.08	145	39.4	<1	7.1	180	627
MW-17	5/9/2018	<1	125	34.9	<1	7.1	167	603
MW-17	9/19/2018	<0.08	152	35.8	<1	6.9	187	659
MW-17	3/15/2019	<0.08	144	38.3	<1	7.1	174	620
MW-17	9/12/2019	0.0889	177	47.8	<1	7.0	280	776
MW-17	4/10/2020	0.0608	178	51.1	0.162	7.0	283	767
MW-18	8/31/2016	4.54	312	67.4	<1	7.0	973	1640
MW-18	9/26/2016	4.11	321	70.6	<1	7.2	874	1660
MW-18	10/12/2016	3.78	287	66.2	<1	7.3	924	1570
MW-18	11/16/2016	4.46	307	<60	<1	7.7	1130	1570
MW-18	12/12/2016	5.14	336	63.3	<1	7.1	918	1570
MW-18	3/9/2017	4.43	287	77.9	<1	8.3	844	1510
MW-18	6/8/2017	3.27	311	59.1	<1	7.0	883	1440
MW-18	7/13/2017	4.85	318	70.8	<1	7.2	1170	1760
MW-18	11/13/2017	3.72	322	54.0	<1	6.9	931	1520
MW-18	5/9/2018	2.62	249	56.5	<1	7.0	748	1450
MW-18	9/19/2018	4.32	306	52.1	<1	6.9	795	1600
MW-18	3/15/2019	2.77	262	49.0	<1	7.0	711	1370
MW-18	9/12/2019	3.00	226	30.8	<1	7.1	612	1210
MW-18	4/10/2020	3.56	272	43.2	0.161	7.0	771	1300

Notes:

1. Abbreviations: mg/L - milligrams per liter; s.u. - standard units.

Analytical Results - Appendix IV Zimmer Coal Pile Runoff Pond

Sample	Date	Antimony, total	Arsenic, total	Barium, total	Beryllium, total	Cadmium, total	Chromium, total	Cobalt, total	Fluoride, total	Lead, total	Lithium, total	Mercury, total	Molybdenum, total	Radium-226 + Radium 228, tot	Selenium, total	Thallium, total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
Background Wel	ls															
MW-1	12/30/2015	< 0.0005	0.00142	0.0655	< 0.001	< 0.0004	0.00191	< 0.0005	0.200	< 0.0002	<0.008	< 0.0001	< 0.0005	0.348	< 0.0006	< 0.0005
MW-1	3/16/2016	< 0.00418	< 0.00295	0.0863	< 0.000875	< 0.00025	< 0.0025	< 0.000543	0.146	< 0.000433	0.0101	< 0.0001	< 0.0025	0.453	< 0.00398	< 0.00138
MW-1	6/16/2016	< 0.002	< 0.001	0.0601	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	<0.00959	< 0.0002	< 0.005	0.603	< 0.005	< 0.001
MW-1	8/31/2016	< 0.002	< 0.001	0.0660	< 0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	0.0102	< 0.0002	< 0.005	0.0844	< 0.005	< 0.001
MW-1	9/26/2016	< 0.002	< 0.001	0.0627	< 0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.168	< 0.005	<0.001
MW-1	10/12/2016	< 0.002	<0.001	0.0639	< 0.001	<0.001	< 0.002	< 0.0005	<1	0.00268	<0.01	< 0.0002	< 0.005	0.489	< 0.005	< 0.001
MW-1	11/16/2016	< 0.002	<0.001	0.0670	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	0.0097	< 0.0002	< 0.005	0.339	< 0.005	<0.001
MW-1	12/13/2016	< 0.002	<0.001	0.0629	<0.001	<0.001	< 0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	< 0.005	0.422	< 0.005	<0.001
MW-1	3/9/2017	< 0.002	<0.001	0.0587	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	0.0107	< 0.0002	< 0.005	0.426	< 0.005	<0.001
MW-1	6/8/2017	< 0.002	<0.001	0.0643	<0.001	<0.001	< 0.002	<0.0005	<1	<0.001	0.0116	<0.0002	<0.005	0.349	< 0.005	<0.001
MW-1	7/13/2017	<0.002	<0.001	0.0566	<0.001	<0.001	< 0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.144	<0.005	<0.001
MW-1	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-1	5/9/2018	< 0.003	< 0.005	<0.2	<0.004	< 0.005	< 0.005	< 0.005	<1	< 0.005	< 0.04	<0.0002	<0.01	0.370	<0.01	<0.002
MW-1	9/27/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.231	NA	NA
MW-1	3/14/2019	< 0.002	< 0.001	0.0665	< 0.001	< 0.001	0.0023	< 0.0005	<1	< 0.001	0.00665	< 0.0002	< 0.005	0.171	< 0.005	< 0.001
MW-1	9/11/2019	NA	< 0.001	0.0770	< 0.001	NA	< 0.002	<0.0005	<1	< 0.001	0.0109	NA	< 0.005	0.110	< 0.005	NA
IVIVV-1	4/9/2020	<0.004	<0.002	0.0725	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00964	<0.0002	<0.005	0.0302	<0.002	<0.002
Downgradient W	ells															
MW-3S	8/31/2016	< 0.002	<0.001	0.0519	<0.001	<0.001	< 0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.138	<0.005	<0.001
MW-3S	9/26/2016	< 0.002	<0.001	0.0515	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.364	0.00588	<0.001
MW-3S	10/12/2016	< 0.002	<0.001	0.0508	<0.001	<0.001	< 0.002	<0.0005	<1	0.00182	<0.00959	<0.0002	< 0.005	0.249	< 0.005	<0.001
MW-3S	11/16/2016	<0.002	0.0019	0.0491	<0.001	<0.001	< 0.002	0.00254	<1	0.00134	<0.00959	< 0.0002	< 0.005	0.520	0.00557	<0.001
MW-3S	12/12/2016	< 0.002	<0.001	0.0393	<0.001	<0.001	< 0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.0391	0.00529	<0.001
MW-3S	3/9/2017	<0.002	<0.001	0.0383	<0.001	<0.001	< 0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.329	<0.005	<0.001
MW-3S	6/8/2017	<0.002	<0.001	0.0507	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.315	<0.005	<0.001
MW-3S	7/13/2017	< 0.002	< 0.001	0.0513	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	<0.00959	<0.0002	< 0.005	0.441	< 0.005	<0.001
MW-3S	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-3S	5/9/2018	<0.003	<0.005	<0.2	<0.004	< 0.005	< 0.005	<0.005	<1	< 0.005	<0.04	<0.0002	<0.01	0.346	< 0.01	<0.002
MW-3S	9/19/2018	NA	NA 0.001	NA 0.0547	NA 0.001	NA	NA	NA	<1	NA 0.001	NA 0.005	NA	NA 0.005	0.491	NA 0.005	NA 0.001
10100-35	3/15/2019	<0.002	<0.001	0.0517	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.005	<0.0002	<0.005	0.262	<0.005	<0.001
IVIV-35	9/11/2019	1NA 10.004	<0.001	0.0715	INA -0.002	<0.001	0.00275	<0.0005	<1	<0.001	0.00549	INA -0.0002	<0.005	0.338	0.0111	INA -0.002
N/W/ 16	4/10/2020 9/21/2016	<0.004	<0.002	0.0370	<0.002	<0.001	<0.002	<0.002	<0.13	<0.005	0.00040	<0.0002	<0.005	0.000	0.00390	<0.002
MW 16	0/31/2010	<0.002	<0.001	0.0371	<0.001	<0.001	<0.002	0.00402	<1	<0.001	<0.00959	<0.0002	0.00679	0.371	<0.005	<0.001
MW-16	10/12/2016	<0.002	0.00124	0.0414	<0.001	<0.001	<0.002	0.00410	<1	0.00383	<0.00939		0.00508	0.402	<0.005	<0.001
MW-16	11/16/2016	<0.002	<0.00124	0.0466	<0.001	<0.001	<0.002	0.00322	<1	<0.00000	<0.000000	<0.0002	0.00572	0.489	<0.005	<0.001
MW-16	12/12/2016	<0.002	<0.001	0.0453	<0.001	<0.001	<0.002	0.00461	<1	<0.001	<0.000000	<0.0002	0.00674	0.403	<0.005	<0.001
MW-16	3/9/2017	<0.002	<0.001	0.0314	<0.001	<0.001	<0.002	0.00204	<1	<0.001	<0.00959	<0.0002	<0.005	0.317	<0.000	<0.001
MW-16	6/8/2017	<0.002	<0.001	0.0348	<0.001	<0.001	<0.002	0.00246	<1	<0.001	<0.00959	<0.0002	<0.005	0.439	<0.005	<0.001
MW-16	7/13/2017	< 0.002	< 0.001	0.0344	< 0.001	< 0.001	< 0.002	0.00252	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.566	< 0.005	< 0.001
MW-16	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-16	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	< 0.005	<1	< 0.005	< 0.04	< 0.0002	<0.01	0.240	< 0.01	< 0.002
MW-16	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.554	NA	NA
MW-16	3/15/2019	< 0.002	< 0.001	0.114	< 0.001	< 0.001	< 0.002	0.00203	<1	< 0.001	0.00677	< 0.0002	< 0.005	0.233	< 0.005	< 0.001
MW-16	9/12/2019	NA	< 0.001	0.0538	NA	< 0.001	0.00218	0.00201	<1	<0.001	0.0111	NA	< 0.005	0.969	< 0.005	NA
MW-16	4/10/2020	< 0.004	<0.002	0.0474	< 0.002	<0.001	< 0.002	0.00208	0.151	< 0.005	0.00522	<0.0002	< 0.005	1.85	< 0.002	<0.002

Analytical Results - Appendix IV Zimmer Coal Pile Runoff Pond

Sample	Date	Antimony, total	Arsenic, total	Barium, total	Beryllium, total	Cadmium, total	Chromium, total	Cobalt, total	Fluoride, total	Lead, total	Lithium, total	Mercury, total	Molybdenum, total	Radium-226 + Radium 228, tot	Selenium, total	Thallium, total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
MW-17	8/31/2016	<0.002	< 0.001	0.0489	< 0.001	< 0.001	< 0.002	0.00177	<1	< 0.001	< 0.00959	< 0.0002	0.00715	0.533	< 0.005	< 0.001
MW-17	9/26/2016	< 0.002	< 0.001	0.0537	< 0.001	< 0.001	< 0.002	0.00189	<1	<0.001	< 0.00959	< 0.0002	0.00825	0.802	< 0.005	< 0.001
MW-17	10/12/2016	< 0.002	< 0.001	0.0532	< 0.001	< 0.001	<0.002	0.00203	<1	0.0015	< 0.00959	< 0.0002	0.009	0.363	< 0.005	<0.001
MW-17	11/16/2016	< 0.002	< 0.001	0.0642	< 0.001	< 0.001	<0.002	0.00159	<1	<0.001	< 0.00959	< 0.0002	0.0096	0.403	< 0.005	<0.001
MW-17	12/12/2016	< 0.002	< 0.001	0.0599	< 0.001	< 0.001	< 0.002	0.00188	<1	<0.001	< 0.00959	< 0.0002	0.0095	0.781	< 0.005	< 0.001
MW-17	3/9/2017	<0.002	<0.001	0.0423	<0.001	<0.001	< 0.002	0.00102	<1	<0.001	<0.00959	< 0.0002	< 0.005	0.264	< 0.005	<0.001
MW-17	6/8/2017	0.00232	< 0.001	0.0498	< 0.001	< 0.001	< 0.002	0.00109	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.266	< 0.005	<0.001
MW-17	7/13/2017	< 0.002	< 0.001	0.0468	< 0.001	< 0.001	< 0.002	0.00117	<1	<0.001	<0.00959	<0.0002	< 0.005	0.246	< 0.005	<0.001
MW-17	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-17	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	<0.005	<1	< 0.005	< 0.04	< 0.0002	<0.01	0.650	<0.01	< 0.002
MW-17	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.359	NA	NA
MW-17	3/15/2019	< 0.002	< 0.001	0.0619	<0.001	< 0.001	< 0.002	0.000964	<1	<0.001	< 0.005	<0.0002	< 0.005	0.150	< 0.005	<0.001
MW-17	9/12/2019	NA	<0.001	0.0815	NA	<0.001	0.00243	0.00139	<1	<0.001	0.0175	NA	< 0.005	0.658	< 0.005	NA
MW-17	4/10/2020	< 0.004	< 0.002	0.0602	< 0.002	<0.001	< 0.002	<0.002	0.162	< 0.005	0.00536	<0.0002	< 0.005	0.806	0.00204	< 0.002
MW-18	8/31/2016	<0.002	<0.001	0.0494	<0.001	<0.001	<0.002	0.00369	<1	<0.001	0.00973	<0.0002	< 0.005	0.975	0.0112	<0.001
MW-18	9/26/2016	< 0.002	< 0.001	0.0471	<0.001	< 0.001	< 0.002	0.00279	<1	<0.001	<0.00959	<0.0002	< 0.005	1.55	0.0142	<0.001
MW-18	10/12/2016	< 0.002	< 0.001	0.0468	<0.001	< 0.001	< 0.002	0.00240	<1	0.00106	<0.00959	<0.0002	< 0.005	0.394	0.00520	<0.001
MW-18	11/16/2016	< 0.002	< 0.001	0.0524	<0.001	< 0.001	< 0.002	0.00231	<1	<0.001	<0.00959	<0.0002	< 0.005	0.65	0.0128	<0.001
MW-18	12/12/2016	< 0.002	< 0.001	0.0550	<0.001	<0.001	< 0.002	0.00358	<1	<0.001	<0.00959	<0.0002	< 0.005	0.89	0.0134	<0.001
MW-18	3/9/2017	< 0.002	< 0.001	0.0416	<0.001	<0.001	< 0.002	0.00168	<1	<0.001	0.0111	<0.0002	< 0.005	0.531	< 0.005	<0.001
MW-18	6/8/2017	< 0.002	< 0.001	0.0475	<0.001	<0.001	< 0.002	0.00203	<1	<0.001	0.0121	<0.0002	< 0.005	0.489	< 0.005	<0.001
MW-18	7/13/2017	< 0.002	<0.001	0.0407	<0.001	<0.001	< 0.002	0.00172	<1	<0.001	< 0.00959	<0.0002	< 0.005	0.728	0.00697	<0.001
MW-18	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-18	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	<0.005	< 0.005	<0.005	<1	< 0.005	<0.04	<0.0002	<0.01	0.405	<0.01	< 0.002
MW-18	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.699	NA	NA
MW-18	3/15/2019	< 0.002	<0.001	0.0398	<0.001	<0.001	<0.002	0.00131	<1	<0.001	0.00562	<0.0002	< 0.005	0.501	0.0143	<0.001
MW-18	9/12/2019	NA	<0.001	0.0411	NA	<0.001	0.00252	0.00176	<1	<0.001	0.0134	NA	< 0.005	0.328	0.0157	NA
MW-18	4/10/2020	< 0.004	< 0.002	0.0317	< 0.002	< 0.001	< 0.002	<0.002	0.161	< 0.005	0.00537	< 0.0002	< 0.005	0.568	0.0120	< 0.002

Notes:

1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; pCi/L - picocurie per liter;

Analytical Results - Appendix III Zimmer Gypsum Recycle Pond

Sample	Date Samplod	Boron, total	Calcium, total	Chloride, total	Fluoride, total	pH	Sulfate, total	Total Dissolved Solids
Bookground	Walla	(IIIg/L)	(IIIg/L)	(IIIg/L)	(ing/L)	(s.u.)	(IIIg/L)	(IIIg/L)
Background		0.0700	100	10.0	0.0700	7.0	52.0	070
10100-8	12/30/2015	0.0783	108	10.3	0.0766	7.3	52.0	370
MVV-8	3/16/2016	0.0359	165	32.4	0.106	7.1	59.1	468
MW-8	6/15/2016	0.0455	114	13.8	<1	7.1	64.4	474
MW-8	9/27/2016	0.0413	119	13.1	<1	7.0	66.0	446
MW-8	12/13/2016	0.0405	128	19.2	<1	7.0	65.2	455
MW-8	3/9/2017	<0.08	114	21.1	<1	8.6	57.3	474
MW-8	6/8/2017	<0.08	118	31.6	<1	7.5	63.4	534
MW-8	7/13/2017	<0.08	109	27.5	<1	6.9	61.1	491
MW-8	11/13/2017	<0.08	113	15.0	<1	6.8	<50	434
MVV-8	5/8/2018	<1	127	33.8	<1	7.0	62.8	491
IVIV-8	9/27/2018	<0.08	121	14.5	<1	7.0	66.5	439
IVIVV-8	3/14/2019	<0.08	117	23.8	<1	6.9	62.5 50.5	402
1VIVV-0	9/11/2019	<0.08	129	34.0 16.0	<0.15	6.8	59.5 65.2	308 121
Downgradion	t Wolls	<0.00	122	10.0	<0.10	0.0	00.2	721
	12/20/2015	1.62	105	01.4	0.206	7.0	250	707
IVIVV-7A	12/30/2015	1.03	135	01.4	0.206	7.0	259	137
IVIVV-7A	3/16/2016	2.82	180	134	0.0655	6.6	444	1090
MW-7A	6/16/2016	0.840	122	90.7	<1	6.8	261	765
MW-7A	9/27/2016	4.51	198	108	<1	6.7	512	1180
MW-7A	12/13/2016	1.41	121	160	<1	6.7	553	/21
MVV-7A	3/10/2017	6.14	260	156	<1	1.1	682	1870
IVIVV-7A	6/8/2017	1.58	146	78.6	<1	6.7	311	854
	11/13/2017	1.22	110	64.7	<1	0.0 6.7	247	720
	5/9/2019	1.40	125	04.7	<1	6.8	217	022
M\\/_7A	9/27/2018	1.54	135	55.7	<1	6.7	205	923
MW-7A	3/13/2019	3.03	175	111	<1	6.5	517	1170
MW-7A	9/11/2019	3.38	159	62.8	<1	7.3	376	912
MW-7A	4/10/2020	2.43	156	62.8	<0.15	7.2	366	876
MW-10	12/29/2015	5.42	135	57.3	0.218	7.7	234	1050
MW-10	3/16/2016	9.05	189	122	0.181	7.1	550	1230
MW-10	6/16/2016	4.91	81.5	146	<1	7.2	409	960
MW-10	9/27/2016	0.270	137	149	<1	7.1	606	1400
MW-10	12/13/2016	6.63	127	221	<1	6.8	527	1190
MW-10	3/10/2017	6.00	103	77.9	<1	7.9	426	1160
MW-10	6/8/2017	5.87	99.7	99.5	<1	6.9	452	1050
MW-10	7/13/2017	4.87	79.1	75.7	<1	7.1	367	883
MW-10	11/14/2017	4.07	126	<150	1.44	6.9	582	1210
MW-10	5/8/2018	5.72	249	146	2.49	6.9	1070	2180
MW-10	9/27/2018	4.89	150	113	1.77	6.9	534	1230
MW-10	3/13/2019	5.90	308	176	2.38	6.7	1420	2390
MVV-10	9/12/2019	2.79	140	/3.3	1.41	6.8	513	1100
MVV-10	4/10/2020	4.38	108	60.5	1.92	7.3	372	845

Analytical Results - Appendix III Zimmer Gypsum Recycle Pond

Sample Location	Date Sampled	Boron, total (mg/L)	Calcium, total (mg/L)	Chloride, total (mg/L)	Fluoride, total (mg/L)	рН (s.u.)	Sulfate, total (mg/L)	Total Dissolved Solids (mg/L)
MW-11	12/29/2015	0.581	176	70.4	0.175	7.0	252	768
MW-11	3/16/2016	0.489	270	126	0.0952	6.8	447	1140
MW-11	6/16/2016	0.572	130	81.1	<1	6.9	170	640
MW-11	9/27/2016	0.444	137	74.8	<1	6.9	196	703
MW-11	12/13/2016	1.45	225	131	<1	6.8	545	1110
MW-11	3/10/2017	0.434	147	66.9	<1	8.1	209	736
MW-11	6/8/2017	0.508	167	69.9	<1	6.8	248	767
MW-11	7/13/2017	0.825	149	66.7	<1	6.8	195	728
MW-11	11/14/2017	0.498	133	68.1	<1	6.8	188	634
MW-11	5/8/2018	<1	139	75.1	<1	7.0	197	793
MW-11	9/27/2018	0.921	164	78.1	<1	6.8	<250	771
MW-11	3/13/2019	0.458	181	58.2	<1	6.7	352	959
MW-11	9/12/2019	0.450	119	45.1	<1	6.9	145	590
MW-11	4/10/2020	0.719	110	48.9	0.170	7.4	135	510

Notes:

1. Abbreviations: mg/L - milligrams per liter; s.u. - standard units.

Analytical Results - Appendix IV Zimmer Gypsum Recycle Pond

0	Diff	Antimony, total	Arsenic, total	Barium, total	Beryllium, total	Cadmium, total	Chromium, total	Cobalt, total	Fluoride, total	Lead, total	Lithium, total	Mercury, total	Molybdenum, total	Radium-226 + Radium 228, tot	Selenium, total	Thallium, total
Sample	Date	(ma/l.)	(ma/L)	(ma/L)	(ma/l.)	(ma/l.)	(ma/L)	(ma/L)	(ma/L)	(ma/L)	(mg/L)	(ma/L)	(mg/L)	(nCi/L)	(ma/l.)	(ma/l.)
Background Wel	lls	(119/2)	(iiig/L)	(iiig/L)	(iiig/L)	(iiig/L)	(mg/L)	(IIIg/L)	(iiig/L)	(iiig/L)	(iiig/L)	(iiig/L)	(mg/t)	(po#2)	(iiig/L/	(119/2)
MW-8	12/30/2015	<0.0005	0.00115	0.0378	<0.001	<0.0004	<0.0005	<0.0005	0.0766	<0.0002	<0.008	<0.0001	<0.0005	0 173	<0.0006	<0.0005
MW-8	3/16/2016	<0.00418	<0.00295	0.0681	<0.001	<0.00025	<0.0000	<0.000543	0.106	<0.000433	0.00635	<0.0001	<0.0000	0.408	<0.00398	<0.00138
MW-8	6/15/2016	<0.002	<0.001	0.0418	<0.000010	<0.001	<0.0020	<0.0005	<1	<0.000100	<0.00959	<0.0002	<0.0020	0.0694	<0.000	<0.001
MW-8	9/27/2016	<0.002	<0.001	0.0430	<0.001	<0.001	<0.002	<0.0005	<1	<0.001	<0.00959	<0.0002	<0.005	0.214	<0.005	<0.001
MW-8	12/13/2016	< 0.002	< 0.001	0.0458	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.710	< 0.005	< 0.001
MW-8	3/9/2017	< 0.002	< 0.001	0.0423	< 0.001	< 0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.361	< 0.005	< 0.001
MW-8	6/8/2017	< 0.002	< 0.001	0.0491	< 0.001	< 0.001	< 0.002	< 0.0005	<1	<0.001	<0.00959	< 0.0002	< 0.005	0.0283	< 0.005	< 0.001
MW-8	7/13/2017	< 0.002	< 0.001	0.0447	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.269	< 0.005	< 0.001
MW-8	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-8	5/8/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	<0.005	<1	< 0.005	<0.04	< 0.0002	<0.01	0.182	<0.01	< 0.002
MW-8	9/27/2018	NA	< 0.001	NA	NA	NA	< 0.002	NA	<1	NA	NA	NA	NA	0.215	NA	NA
MW-8	3/14/2019	< 0.002	<0.001	0.0454	<0.001	<0.001	0.00201	< 0.0005	<1	<0.001	< 0.005	<0.0002	< 0.005	0.0807	< 0.005	<0.001
MW-8	9/11/2019	NA	<0.001	0.0552	<0.001	NA	0.00206	<0.0005	<1	<0.001	0.00754	NA	< 0.005	0.261	< 0.005	NA
MW-8	4/9/2020	<0.004	<0.002	0.0460	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	0.00464	<0.0002	<0.005	0.292	<0.002	<0.002
Downgradient W	/ells															
MW-7A	12/30/2015	< 0.0005	0.00217	0.0597	<0.001	< 0.0004	< 0.0005	0.0126	0.206	< 0.0002	<0.008	<0.0001	0.00369	0.174	<0.0006	< 0.0005
MW-7A	3/16/2016	0.000634	0.0978	0.0543	<0.001	< 0.0004	0.0123	0.00783	0.0655	<0.0002	0.00136	<0.0001	0.0014	0.645	0.00267	< 0.0005
MW-7A	6/16/2016	< 0.002	<0.001	0.0377	<0.001	<0.001	< 0.002	0.00291	<1	<0.001	< 0.00959	<0.0002	< 0.005	0.256	< 0.005	<0.001
MW-7A	9/27/2016	<0.002	<0.001	0.0544	<0.001	<0.001	<0.002	0.00411	<1	<0.001	<0.00959	< 0.0002	< 0.005	0.471	< 0.005	<0.001
MW-7A	12/13/2016	<0.002	<0.001	0.0319	<0.001	<0.001	<0.002	0.00298	<1	<0.001	< 0.00959	<0.0002	<0.005	0.377	< 0.005	<0.001
MW-7A	3/10/2017	<0.002	<0.001	0.0437	<0.001	<0.001	<0.002	0.00528	<1	<0.001	< 0.00959	<0.0002	<0.005	0.190	< 0.005	<0.001
MW-7A	6/8/2017	<0.002	<0.001	0.0287	<0.001	<0.001	<0.002	0.00149	<1	<0.001	< 0.00959	<0.0002	<0.005	0.347	< 0.005	<0.001
MW-7A	7/13/2017	<0.002	< 0.001	0.0263	< 0.001	< 0.001	< 0.002	0.00113	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.821	< 0.005	< 0.001
MW-7A	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-7A	5/8/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	0.00755	<0.005	<1	< 0.005	< 0.04	<0.0002	<0.01	0.522	< 0.01	< 0.002
MW-7A	9/27/2018	NA	< 0.001	NA	NA	NA	0.00207	NA	<1	NA	NA	NA	NA	0.411	NA	NA
MVV-7A	3/13/2019	<0.002	< 0.001	0.0483	<0.001	< 0.001	<0.002	0.00245	<1	< 0.001	< 0.005	<0.0002	<0.005	0.310	< 0.005	<0.001
MVV-7A	9/11/2019	NA	< 0.001	0.0458	NA	< 0.001	<0.002	0.00101	<1	< 0.001	0.0124	NA	<0.005	0.436	< 0.005	NA
IVIVV-7A	4/10/2020	<0.004	<0.002	0.0371	<0.002	<0.001	<0.002	<0.002	<0.15	<0.005	<0.002	<0.0002	<0.005	0.785	0.00204	<0.002
IVIV-10	12/29/2015	<0.0005	0.00228	0.130	<0.001	<0.0004	0.00293	0.0100	0.218	<0.0002	<0.008	<0.0001	0.0146	0.434	<0.0006	<0.0005
10100-10	3/16/2016	<0.0005	0.00263	0.114	<0.001	<0.0004	<0.0005	0.00835	0.181	<0.0002	0.00132	<0.0001	0.00750	0.382	<0.0006	<0.0005
N/V/ 10	0/10/2010	<0.002	0.00139	0.0729	<0.001	<0.001	<0.002	0.00410	<1	<0.001	<0.00939	<0.0002	0.00793	0.707	<0.005	<0.001
M/W 10	12/12/2016	<0.002	0.00203	0.0377	<0.001	<0.001	<0.002	0.00730	<1	<0.001	<0.0103	<0.0002	0.0109	0.321	<0.005	<0.001
MW-10	3/10/2017	<0.002	0.00127	0.0430	<0.001	<0.001	<0.002	0.00883	<1	<0.001	<0.00959	<0.0002	0.00590	0.135	<0.005	<0.001
MW-10	6/8/2017	<0.002	0.00286	0.0618	<0.001	<0.001	<0.002	0.000000	<1	<0.001	<0.00959	<0.0002	0.00752	0.440	<0.005	<0.001
MW-10	7/13/2017	<0.002	<0.001	0.0453	<0.001	<0.001	<0.002	0.00371	<1	<0.001	<0.00959	<0.0002	0.00731	1 41	<0.005	<0.001
MW-10	11/14/2017	NA	NA	NA	NA	NA	NA	NA	1.44	NA	NA	NA	NA	NA	NA	NA
MW-10	5/8/2018	< 0.003	0.00535	<0.2	< 0.004	< 0.005	<0.005	<0.005	2.49	< 0.005	< 0.04	< 0.0002	<0.01	0.246	< 0.01	< 0.002
MW-10	9/27/2018	NA	0.00153	NA	NA	NA	< 0.002	NA	1.77	NA	NA	NA	NA	0.294	NA	NA
MW-10	3/13/2019	< 0.002	0.00407	0.021	< 0.001	< 0.001	< 0.002	0.00112	2.38	< 0.001	0.0187	< 0.0002	< 0.005	0.363	< 0.005	< 0.001
MW-10	9/12/2019	NA	0.00501	0.0127	NA	<0.001	< 0.002	0.00464	1.41	<0.001	0.0144	NA	0.0105	0.336	< 0.005	NA
MW-10	4/10/2020	< 0.004	0.00201	<0.02	<0.002	<0.001	< 0.002	< 0.002	1.92	< 0.005	0.00934	< 0.0002	0.00628	1.29	< 0.002	<0.002
Analytical Results - Appendix IV Zimmer Gypsum Recycle Pond

Comula	Data	Antimony, total	Arsenic, total	Barium, total	Beryllium, total	Cadmium, total	Chromium, total	Cobalt, total	Fluoride, total	Lead, total	Lithium, total	Mercury, total	Molybdenum, total	Radium-226 + Radium 228, tot	Selenium, total	Thallium, total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
MW-11	12/29/2015	< 0.0005	0.00194	0.00977	< 0.001	< 0.0004	0.000794	0.00920	0.175	< 0.0002	<0.008	<0.0001	0.00471	0.471	<0.0006	< 0.0005
MW-11	3/16/2016	< 0.0005	0.00350	0.116	< 0.001	< 0.0004	< 0.0005	0.00422	0.0952	< 0.0002	0.0014	<0.0001	0.00219	0.523	<0.0006	< 0.0005
MW-11	6/16/2016	< 0.002	< 0.001	0.0539	< 0.001	<0.001	< 0.002	0.00192	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.525	< 0.005	< 0.001
MW-11	9/27/2016	< 0.002	<0.001	0.0643	< 0.001	<0.001	< 0.002	0.00147	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.891	< 0.005	< 0.001
MW-11	12/13/2016	< 0.002	< 0.001	0.0921	< 0.001	<0.001	< 0.002	0.0019	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.600	< 0.005	< 0.001
MW-11	3/10/2017	< 0.002	<0.001	0.0585	<0.001	<0.001	< 0.002	0.00176	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.525	< 0.005	<0.001
MW-11	6/8/2017	< 0.002	0.00166	0.0643	<0.001	<0.001	< 0.002	0.00200	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.347	< 0.005	<0.001
MW-11	7/13/2017	< 0.002	<0.001	0.0589	<0.001	<0.001	< 0.002	0.00172	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.569	< 0.005	<0.001
MW-11	11/14/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-11	5/8/2018	< 0.003	< 0.005	<0.2	< 0.004	<0.005	< 0.005	<0.005	<1	< 0.005	< 0.04	< 0.0002	<0.01	0.457	<0.01	< 0.002
MW-11	9/27/2018	NA	<0.001	NA	NA	NA	< 0.002	NA	<1	NA	NA	NA	NA	0.294	NA	NA
MW-11	3/13/2019	< 0.002	0.00123	0.0764	< 0.001	< 0.001	< 0.002	0.00175	<1	< 0.001	< 0.005	< 0.0002	< 0.005	0.531	< 0.005	< 0.001
MW-11	9/12/2019	NA	0.00109	0.0493	NA	< 0.001	< 0.002	0.00136	<1	< 0.001	0.00609	NA	< 0.005	0.105	< 0.005	NA
MW-11	4/10/2020	< 0.004	< 0.002	0.0443	< 0.002	< 0.001	< 0.002	< 0.002	0.170	< 0.005	< 0.002	< 0.0002	< 0.005	0.955	< 0.002	< 0.002

Notes:

1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; pCi/L - picocurie per liter;

Analytical Results - Appendix III Zimmer D Basin

Sample	Date Sampled	Boron, total	Calcium, total	Chloride, total	Fluoride, total	pH	Sulfate, total	Total Dissolved Solids (mg/L)
Background	Wells	(mg/∟)	(IIIg/L)	(iiig/L)	(iiig/L)	(s.u.)	(iiig/L)	(mg/L)
MW-1	12/30/2015	0.0720	155	48.5	0.200	7.2	90.1	544
MW-1	3/16/2016	0.0233	206	59.1	0 146	7 1	85.2	583
M\\/-1	6/16/2016	0.0289	154	59.6	<1	7.1	95.3	648
	0/10/2010	0.0303	169	72.4	<1	6.4	112	612
	0/31/2010	0.0431	100	73.4	<1	0.4	113	012
	9/26/2016	0.0349	160	64.9	<1	7.1	93.1	621
	10/12/2016	0.0634	150	79.2 57.7	<1	1.2	112	571
	12/13/2016	0.0304	165	52.4	<1	0.4	90.0	590
	3/9/2017	0.0322	165	58.2	<1	7.0	93.3 85.9	589
M\\/-1	6/8/2017	<0.00	171	65.5	<1	7.1	87.0	582
MW-1	7/13/2017	<0.00	144	61.3	<1	7.1	79.0	608
MW-1	11/13/2017	<0.08	150	53.1	<1	6.9	89.1	571
MW-1	5/9/2018	<1	157	71.0	<1	7.0	88.9	631
MW-1	9/27/2018	<0.08	163	62.7	<1	6.9	113	578
MW-1	3/14/2019	<0.08	152	78.7	<1	7.0	90.2	617
MW-1	9/11/2019	<0.08	167	63.1	<1	7.0	90.6	637
MW-1	4/9/2020	0.123	170	80.5	<0.15	6.7	92.3	592
MW-8	12/30/2015	0.0783	108	10.3	0.0766	7.3	52.0	370
MW-8	3/16/2016	0.0359	165	32.4	0.106	7.1	59.1	468
MW-8	6/15/2016	0.0455	114	13.8	<1	7.1	64.4	474
MW-8	9/27/2016	0.0413	119	13.1	<1	7.0	66.0	446
MW-8	12/13/2016	0.0405	128	19.2	<1	7.0	65.2	455
MW-8	3/9/2017	< 0.08	114	21.1	<1	8.6	57.3	474
MW-8	6/8/2017	<0.08	118	31.6	<1	7.5	63.4	534
MW-8	7/13/2017	<0.08	109	27.5	<1	6.9	61.1	491
MW-8	11/13/2017	<0.08	113	15.0	<1	6.8	<50	434
MW-8	5/8/2018	<1	127	33.8	<1	7.0	62.8	491
MW-8	9/27/2018	<0.08	121	14.5	<1	7.0	66.5	439
MW-8	3/14/2019	<0.08	117	23.8	<1	6.9	62.5	462
MW-8	9/11/2019	<0.08	129	34.0	<1	6.8	59.5	508
MW-8	4/9/2020	<0.03	122	16.0	<0.15	6.8	65.2	421
MW-12	12/30/2015	0.300	179	27.3	0.145	7.1	127	608
MW-12	3/18/2016	0.220	200	66.0	0.172	6.8	99.8	666
MW-12	6/15/2016	0.273	159	42.4	<1	7.0	137	649
MW-12	9/27/2016	0.276	160	29.5	<1	7.1	110	600
MW-12	12/13/2016	0.241	151	31.0	<1	6.9	88.8	555
MW-12	3/9/2017	0.246	160	42.9	<1	8.4	113	610
MW-12	6/8/2017	0.215	168	39.6	<1	7.0	110	606
MW-12	7/13/2017	0.199	154	35.6	<1	6.9	105	579
MW-12	11/13/2017	0.199	146	30.0	<1	6.8	95.5	550
MW-12	5/9/2018	<1	143	30.7	<1	6.9	104	584
MW-12	9/19/2018	0.272	163	31.9	<1	6.8	104	577
IVIVV-12	3/14/2019	0.256	147	33.2	<1	6.9	106	596
	9/11/2019	0.204	148	26.6	<1	1.1	90.0	557
IVIVV-12	4/9/2020	0.210	162	32.5	<0.15	0.9	98.3	298

Analytical Results - Appendix III Zimmer D Basin

Sample	Date	Boron, total	Calcium, total	Chloride, total	Fluoride, total	рН	Sulfate, total	Total Dissolved Solids
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
Downgradien	t Wells							
MW-9	12/30/2015	3.31	331	106	0.152	7.2	944	1770
MW-9	3/17/2016	1.98	363	111	0.139	7.0	789	1680
MW-9	6/15/2016	1.12	235	55.6	<1	7.2	630	1170
MW-9	9/27/2016	0.628	213	38.3	<1	7.2	512	989
MW-9	12/12/2016	1.96	280	71.8	<1	7.0	740	1430
MW-9	3/9/2017	2.65	300	104	<1	8.3	837	1680
MW-9	6/8/2017	0.521	262	72.6	<1	7.0	658	1240
MW-9	7/13/2017	1.30	291	<150	<1	7.1	729	1380
MW-9	11/13/2017	0.869	264	50.7	<1	7.0	650	1190
MW-9	5/9/2018	2.47	360	110	<1	6.9	905	1870
MW-9	9/19/2018	1.62	277	53.5	<1	6.8	658	1320
MW-9	3/14/2019	2.29	299	111	<1	7.0	995	1840
MW-9	9/11/2019	0.737	236	30.7	<1	8.3	495	1190
MW-9	4/9/2020	0.511	270	32.3	<0.15	6.9	589	1160
MW-13	12/29/2015	0.0968	220	13.9	0.280	7.2	328	710
MW-13	3/17/2016	0.0482	165	20.7	0.294	7.2	276	667
MW-13	6/15/2016	0.0739	134	39.9	<1	7.1	256	685
MW-13	9/27/2016	0.0594	163	21.9	<1	7.2	215	672
MW-13	12/13/2016	0.0612	162	19.6	<1	7.1	239	678
MW-13	3/9/2017	<0.08	140	17.3	<1	8.5	267	705
MW-13	6/8/2017	<0.08	154	17.2	<1	7.1	256	683
MW-13	7/13/2017	<0.08	149	15.9	<1	7.2	302	722
MW-13	11/13/2017	<0.08	151	19.0	<1	6.9	<250	667
MW-13	5/9/2018	<1	147	17.2	<1	7.1	236	674
MW-13	9/19/2018	<0.08	167	19.2	<1	6.9	260	732
MW-13	3/14/2019	0.0830	141	18.5	<1	7.1	260	717
MW-13	9/11/2019	<0.08	144	14.4	<1	7.6	146	616
MW-13	4/9/2020	0.0597	166	20.4	0.165	7.0	281	715

Analytical Results - Appendix III Zimmer D Basin

Sample	Date	Boron, total	Calcium, total	Chloride, total	Fluoride, total	рН	Sulfate, total	Total Dissolved Solids
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(s.u.)	(mg/L)	(mg/L)
MW-14	12/29/2015	0.110	262	<0.7	<0.06	7.3	467	1010
MW-14	3/17/2016	0.0453	245	33.7	0.225	7.2	470	992
MW-14	6/15/2016	0.0595	172	<30	<1	7.1	348	837
MW-14	9/27/2016	0.0661	183	29.6	<1	7.1	303	814
MW-14	12/13/2016	0.0702	196	33.4	<1	7.0	365	905
MW-14	3/9/2017	<0.08	192	29.9	<1	8.4	408	916
MW-14	6/8/2017	<0.08	181	<30	<1	7.0	354	843
MW-14	7/13/2017	<0.08	198	30.8	<1	7.2	477	1020
MW-14	11/13/2017	<0.08	194	30.6	<1	7.0	340	893
MW-14	5/9/2018	<1	199	27.9	<1	7.1	398	947
MW-14	9/19/2018	<0.08	207	31.6	<1	6.9	416	1000
MW-14	3/14/2019	<0.08	186	29.5	<1	7.1	420	946
MW-14	9/11/2019	0.139	181	28.8	<1	7.4	287	836
MW-14	4/9/2020	0.116	213	40.0	0.179	7.4	427	939
MW-15	12/30/2015	0.110	296	31.1	0.298	7.1	505	1100
MW-15	3/18/2016	0.0557	233	34.0	0.290	6.9	447	1110
MW-15	6/15/2016	0.0737	213	34.9	<1	6.9	606	1120
MW-15	9/27/2016	0.0833	237	38.0	<1	7.1	493	1160
MW-15	12/13/2016	0.0816	247	38.2	<1	7.0	522	1140
MW-15	3/9/2017	<0.08	212	32.8	<1	8.4	505	1100
MW-15	6/8/2017	<0.08	226	32.4	<1	7.0	524	1090
MW-15	7/13/2017	<0.08	217	36.6	<1	7.1	549	1120
MW-15	11/13/2017	<0.08	224	36.5	<1	6.8	498	1110
MW-15	5/9/2018	<1	203	31.1	<1	7.0	414	1000
MW-15	9/19/2018	0.0939	240	38.7	<1	6.9	529	1170
MW-15	3/14/2019	0.0807	198	38.6	<1	6.9	486	1090
MW-15	9/11/2019	0.120	241	36.2	<1	7.4	535	1170
MW-15	4/9/2020	0.0790	258	41.1	0.175	7.4	567	1090

Notes:

1. Abbreviations: mg/L - milligrams per liter; s.u. - standard units.

Analytical Results - Appendix IV Zimmer D Basin

Sample	Date	Antimony, total	Arsenic, total	Barium, total	Beryllium, total	Cadmium,t otal	Chromium, total	Cobalt, total	Fluoride, total	Lead, total	Lithium, total	Mercury, total	Molybdenum, total	Radium-226 + Radium 228, tot	Selenium, total	Thallium, total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
Background wei	IS															
MW-1	12/30/2015	<0.0005	0.00142	0.0655	<0.001	< 0.0004	0.00191	< 0.0005	0.200	<0.0002	<0.008	<0.0001	<0.0005	0.348	<0.0006	< 0.0005
MW-1	3/16/2016	<0.00418	< 0.00295	0.0863	< 0.000875	<0.00025	<0.0025	< 0.000543	0.146	< 0.000433	0.0101	<0.0001	<0.0025	0.453	<0.00398	<0.00138
MW-1	6/16/2016	<0.002	<0.001	0.0601	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	<0.00959	< 0.0002	< 0.005	0.603	<0.005	<0.001
MW-1	8/31/2016	< 0.002	<0.001	0.0660	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	0.0102	< 0.0002	< 0.005	0.0844	< 0.005	<0.001
MW-1	9/26/2016	<0.002	<0.001	0.0627	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	<0.00959	< 0.0002	< 0.005	0.168	<0.005	<0.001
MW-1	10/12/2016	<0.002	<0.001	0.0639	<0.001	<0.001	< 0.002	< 0.0005	<1	0.00268	<0.01	< 0.0002	< 0.005	0.489	<0.005	<0.001
MW-1	11/16/2016	<0.002	<0.001	0.0670	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	0.0097	< 0.0002	< 0.005	0.339	< 0.005	<0.001
MW-1	12/13/2016	<0.002	<0.001	0.0629	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	<0.00959	< 0.0002	< 0.005	0.422	<0.005	<0.001
MW-1	3/9/2017	< 0.002	<0.001	0.0587	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	0.0107	< 0.0002	< 0.005	0.426	< 0.005	<0.001
MW-1	6/8/2017	<0.002	<0.001	0.0643	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	0.0116	< 0.0002	< 0.005	0.349	<0.005	<0.001
MW-1	7/13/2017	< 0.002	<0.001	0.0566	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.144	< 0.005	<0.001
MW-1	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-1	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	<0.005	< 0.005	< 0.005	<1	< 0.005	<0.04	< 0.0002	<0.01	0.370	<0.01	<0.002
MW-1	9/27/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.231	NA	NA
MW-1	3/14/2019	<0.002	<0.001	0.0665	<0.001	<0.001	0.0023	< 0.0005	<1	<0.001	0.00665	< 0.0002	< 0.005	0.171	<0.005	<0.001
MW-1	9/11/2019	NA	<0.001	0.0770	<0.001	NA	< 0.002	< 0.0005	<1	< 0.001	0.0109	NA	< 0.005	0.110	< 0.005	NA
MW-1	4/9/2020	< 0.004	< 0.002	0.0725	<0.002	<0.001	< 0.002	< 0.002	<0.15	< 0.005	0.00964	< 0.0002	< 0.005	0.0302	<0.002	< 0.002
MW-8	12/30/2015	<0.0005	0.00115	0.0378	<0.001	< 0.0004	< 0.0005	< 0.0005	0.0766	< 0.0002	<0.008	< 0.0001	<0.0005	0.173	<0.0006	< 0.0005
MW-8	3/16/2016	<0.00418	< 0.00295	0.0681	<0.000875	< 0.00025	<0.0025	< 0.000543	0.106	< 0.000433	0.00635	< 0.0001	<0.0025	0.408	< 0.00398	<0.00138
MW-8	6/15/2016	< 0.002	< 0.001	0.0418	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.0694	< 0.005	<0.001
MW-8	9/27/2016	< 0.002	<0.001	0.0430	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.214	< 0.005	<0.001
MW-8	12/13/2016	< 0.002	< 0.001	0.0458	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.710	< 0.005	<0.001
MW-8	3/9/2017	< 0.002	<0.001	0.0423	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.361	< 0.005	<0.001
MW-8	6/8/2017	<0.002	<0.001	0.0491	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	<0.00959	< 0.0002	< 0.005	0.0283	<0.005	<0.001
MW-8	7/13/2017	< 0.002	<0.001	0.0447	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.269	< 0.005	<0.001
MW-8	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-8	5/8/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	< 0.005	<1	< 0.005	< 0.04	< 0.0002	<0.01	0.182	<0.01	< 0.002
MW-8	9/27/2018	NA	<0.001	NA	NA	NA	< 0.002	NA	<1	NA	NA	NA	NA	0.215	NA	NA
MW-8	3/14/2019	<0.002	<0.001	0.0454	<0.001	<0.001	0.00201	< 0.0005	<1	<0.001	< 0.005	< 0.0002	< 0.005	0.0807	<0.005	<0.001
MW-8	9/11/2019	NA	<0.001	0.0552	<0.001	NA	0.00206	< 0.0005	<1	<0.001	0.00754	NA	< 0.005	0.261	<0.005	NA
MW-8	4/9/2020	<0.004	<0.002	0.0460	<0.002	<0.001	<0.002	<0.002	<0.15	< 0.005	0.00464	< 0.0002	<0.005	0.292	<0.002	<0.002
MW-12	12/30/2015	<0.0005	0.00169	0.0697	<0.001	< 0.0004	0.000518	< 0.0005	0.145	< 0.0002	<0.008	<0.0001	<0.0005	0.318	0.00131	< 0.0005
MW-12	3/18/2016	<0.00418	< 0.00295	0.0813	< 0.000875	< 0.00025	< 0.0025	< 0.000543	0.172	< 0.000433	0.00875	< 0.0001	<0.0025	0.510	< 0.00398	< 0.00138
MW-12	6/15/2016	<0.002	<0.001	0.0605	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.130	< 0.005	<0.001
MW-12	9/27/2016	<0.002	<0.001	0.0614	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	<0.00959	< 0.0002	< 0.005	1.11	<0.005	<0.001
MW-12	12/13/2016	< 0.002	<0.001	0.0588	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.375	< 0.005	<0.001
MW-12	3/9/2017	<0.002	<0.001	0.0563	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.429	< 0.005	<0.001
MW-12	6/8/2017	< 0.002	<0.001	0.0618	<0.001	<0.001	< 0.002	< 0.0005	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.182	< 0.005	<0.001
MW-12	7/13/2017	<0.002	<0.001	0.0579	<0.001	<0.001	< 0.002	< 0.0005	<1	<0.001	<0.00959	< 0.0002	< 0.005	0.288	<0.005	<0.001
MW-12	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-12	5/9/2018	< 0.003	<0.005	<0.2	< 0.004	<0.005	< 0.005	<0.005	<1	< 0.005	< 0.04	<0.0002	<0.01	0.411	<0.01	<0.002
MW-12	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.522	NA	NA
MW-12	3/14/2019	<0.002	<0.001	0.0631	<0.001	<0.001	0.00218	< 0.0005	<1	<0.001	0.00543	<0.0002	<0.005	0.247	<0.005	<0.001
MW-12	9/11/2019	NA	<0.001	0.0692	<0.001	NA	0.00249	<0.0005	<1	<0.001	0.0114	NA	<0.005	0.118	<0.005	NA
MW-12	4/9/2020	< 0.004	< 0.002	0.0657	<0.002	<0.001	< 0.002	< 0.002	<0.15	< 0.005	0.00591	< 0.0002	< 0.005	3.90	<0.002	< 0.002

Analytical Results - Appendix IV Zimmer D Basin

Sample	Date	Antimony, total	Arsenic, total	Barium, total	Beryllium, total	Cadmium,t otal	Chromium, total	Cobalt, total	Fluoride, total	Lead, total	Lithium, total	Mercury, total	Molybdenum, total	Radium-226 + Radium 228, tot	Selenium, total	Thallium, total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
Downgradient V	Vells															
MW-9	12/30/2015	< 0.0005	0.00454	0.0450	< 0.001	0.000721	0.00159	0.00327	0.152	0.00021	0.00836	< 0.0001	0.00145	0.649	< 0.0006	< 0.0005
MW-9	3/17/2016	<0.00418	< 0.00295	0.0567	< 0.000875	< 0.00025	<0.0025	0.00406	0.139	< 0.000433	0.011	< 0.0001	<0.0025	0.637	< 0.00398	< 0.00138
MW-9	6/15/2016	< 0.002	0.00127	0.0253	< 0.001	< 0.001	< 0.002	0.00253	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.573	< 0.005	< 0.001
MW-9	9/27/2016	< 0.002	0.00140	0.0239	< 0.001	< 0.001	< 0.002	0.00202	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.841	< 0.005	< 0.001
MW-9	12/12/2016	< 0.002	0.00151	0.0269	< 0.001	<0.001	< 0.002	0.00299	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	1.07	< 0.005	< 0.001
MW-9	3/9/2017	< 0.002	0.00161	0.0330	< 0.001	<0.001	< 0.002	0.00403	<1	< 0.001	0.0126	< 0.0002	< 0.005	0.358	< 0.005	< 0.001
MW-9	6/8/2017	< 0.002	0.00257	0.0337	< 0.001	<0.001	<0.002	0.00219	<1	< 0.001	0.0124	< 0.0002	< 0.005	0.32	< 0.005	< 0.001
MW-9	7/13/2017	< 0.002	0.00178	0.0308	<0.001	<0.001	<0.002	0.00292	<1	< 0.001	0.0116	< 0.0002	< 0.005	0.729	< 0.005	< 0.001
MW-9	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-9	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	<0.005	< 0.005	<1	< 0.005	< 0.04	< 0.0002	<0.01	0.446	<0.01	< 0.002
MW-9	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.342	NA	NA
MW-9	3/14/2019	< 0.002	0.00171	0.0333	<0.001	<0.001	<0.002	0.00351	<1	< 0.001	0.00779	< 0.0002	< 0.005	0.323	< 0.005	<0.001
MW-9	9/11/2019	NA	0.00188	0.0261	< 0.001	NA	0.00237	0.00267	<1	< 0.001	0.0135	NA	< 0.005	0.372	< 0.005	NA
MW-9	4/9/2020	< 0.004	< 0.002	0.0260	< 0.002	<0.001	<0.002	0.00286	<0.15	< 0.005	0.00709	< 0.0002	< 0.005	6.29	< 0.002	< 0.002
MW-13	12/29/2015	0.000841	0.00260	0.0564	<0.001	< 0.0004	< 0.0005	0.00653	0.280	< 0.0002	<0.008	<0.0001	0.00495	0.574	0.000664	< 0.0005
MW-13	3/17/2016	<0.00418	0.00480	0.0691	< 0.000875	< 0.00025	< 0.0025	0.00516	0.294	< 0.000433	0.00426	<0.0001	0.00674	0.425	< 0.00398	< 0.00138
MW-13	6/15/2016	< 0.002	0.00264	0.0521	<0.001	<0.001	<0.002	0.00641	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.459	< 0.005	<0.001
MW-13	9/27/2016	< 0.002	0.00460	0.0524	<0.001	<0.001	<0.002	0.00514	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.612	< 0.005	<0.001
MW-13	12/13/2016	< 0.002	0.00324	0.0536	< 0.001	<0.001	< 0.002	0.00477	<1	< 0.001	< 0.00959	< 0.0002	0.005	0.646	< 0.005	<0.001
MW-13	3/9/2017	< 0.002	0.00348	0.0516	<0.001	<0.001	<0.002	0.00348	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.235	< 0.005	<0.001
MW-13	6/8/2017	< 0.002	0.00319	0.0503	<0.001	<0.001	< 0.002	0.00237	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.284	< 0.005	<0.001
MW-13	7/13/2017	< 0.002	0.00222	0.0446	<0.001	<0.001	< 0.002	0.00244	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.841	< 0.005	<0.001
MW-13	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-13	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	< 0.005	<1	< 0.005	<0.04	<0.0002	<0.01	0.565	<0.01	<0.002
MW-13	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.478	NA	NA
MW-13	3/14/2019	< 0.002	0.0183	0.0540	<0.001	<0.001	< 0.002	0.00295	<1	<0.001	< 0.005	<0.0002	< 0.005	0.284	<0.005	<0.001
MW-13	9/11/2019	NA	0.00525	0.0461	< 0.001	NA	0.00231	0.00368	<1	< 0.001	0.00811	NA	< 0.005	0.449	< 0.005	NA
MW-13	4/9/2020	< 0.004	0.00261	0.0477	< 0.002	<0.001	< 0.002	0.00297	0.165	< 0.005	0.00266	< 0.0002	< 0.005	3.43	< 0.002	<0.002

Analytical Results - Appendix IV Zimmer D Basin

Sample	Date	Antimony, total	Arsenic, total	Barium, total	Beryllium, total	Cadmium,t otal	Chromium, total	Cobalt, total	Fluoride, total	Lead, total	Lithium, total	Mercury, total	Molybdenum, total	Radium-226 + Radium 228, tot	Selenium, total	Thallium, total
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	(mg/L)	(mg/L)
MW-14	12/29/2015	0.00067	0.00263	0.0509	<0.001	< 0.0004	< 0.0005	0.00857	< 0.06	0.000291	<0.008	< 0.0001	0.00142	0.594	< 0.0006	< 0.0005
MW-14	3/17/2016	< 0.00418	< 0.00295	0.0641	< 0.000875	< 0.00025	< 0.0025	0.00514	0.225	< 0.000433	0.00379	<0.0001	0.00276	0.957	< 0.00398	< 0.00138
MW-14	6/15/2016	< 0.002	0.00171	0.0480	<0.001	<0.001	< 0.002	0.00547	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.534	< 0.005	< 0.001
MW-14	9/27/2016	< 0.002	0.00163	0.0464	<0.001	<0.001	< 0.002	0.00435	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.496	< 0.005	<0.001
MW-14	12/13/2016	< 0.002	0.00173	0.0535	<0.001	<0.001	< 0.002	0.00563	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	1.36	< 0.005	< 0.001
MW-14	3/9/2017	<0.002	0.00168	0.0465	<0.001	< 0.001	< 0.002	0.00367	<1	<0.001	< 0.00959	<0.0002	< 0.005	0.444	< 0.005	<0.001
MW-14	6/8/2017	<0.002	0.00158	0.0465	<0.001	< 0.001	< 0.002	0.00278	<1	< 0.001	< 0.00959	<0.0002	< 0.005	0.318	< 0.005	< 0.001
MW-14	7/13/2017	<0.002	0.00124	0.0440	<0.001	< 0.001	< 0.002	0.00231	<1	<0.001	< 0.00959	<0.0002	< 0.005	0.689	< 0.005	<0.001
MW-14	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-14	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	< 0.005	<1	< 0.005	< 0.04	< 0.0002	<0.01	0.618	<0.01	< 0.002
MW-14	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	0.933	NA	NA
MW-14	3/14/2019	< 0.002	<0.001	0.0507	<0.001	<0.001	0.00213	0.00229	<1	<0.001	< 0.005	<0.0002	< 0.005	0.229	< 0.005	<0.001
MW-14	9/11/2019	NA	0.00155	0.0554	< 0.001	NA	0.00254	0.00239	<1	< 0.001	0.00843	NA	< 0.005	1.94	< 0.005	NA
MW-14	4/9/2020	< 0.004	< 0.002	0.0501	< 0.002	<0.001	< 0.002	0.00223	0.179	< 0.005	0.00236	< 0.0002	< 0.005	1.6	< 0.002	< 0.002
MW-15	12/30/2015	0.000823	0.00265	0.0896	<0.001	< 0.0004	< 0.0005	0.0109	0.298	< 0.0002	<0.008	<0.0001	0.00554	0.59	<0.0006	< 0.0005
MW-15	3/18/2016	< 0.00418	< 0.00295	0.0835	< 0.000875	<0.00025	< 0.0025	0.00798	0.290	< 0.000433	0.00298	<0.0001	0.00495	0.419	< 0.00398	<0.00138
MW-15	6/15/2016	< 0.002	< 0.001	0.0687	< 0.001	< 0.001	< 0.002	0.00751	<1	< 0.001	< 0.00959	< 0.0002	< 0.005	0.735	< 0.005	<0.001
MW-15	9/27/2016	< 0.002	<0.001	0.0773	<0.001	<0.001	< 0.002	0.00778	<1	<0.001	< 0.00959	<0.0002	< 0.005	1.26	< 0.005	<0.001
MW-15	12/13/2016	< 0.002	< 0.001	0.0767	< 0.001	< 0.001	< 0.002	0.00701	<1	< 0.001	< 0.00959	< 0.0002	0.00524	0.936	< 0.005	<0.001
MW-15	3/9/2017	< 0.002	<0.001	0.0677	<0.001	<0.001	< 0.002	0.00593	<1	<0.001	< 0.00959	< 0.0002	< 0.005	0.556	< 0.005	<0.001
MW-15	6/8/2017	< 0.002	<0.001	0.0663	<0.001	<0.001	< 0.002	0.00353	<1	<0.001	< 0.00959	<0.0002	< 0.005	0.474	< 0.005	<0.001
MW-15	7/13/2017	< 0.002	< 0.001	0.0676	<0.001	<0.001	< 0.002	0.00427	<1	<0.001	< 0.00959	<0.0002	< 0.005	0.554	< 0.005	<0.001
MW-15	11/13/2017	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	NA	NA	NA
MW-15	5/9/2018	< 0.003	< 0.005	<0.2	< 0.004	< 0.005	< 0.005	< 0.005	<1	< 0.005	< 0.04	< 0.0002	<0.01	0.707	<0.01	< 0.002
MW-15	9/19/2018	NA	NA	NA	NA	NA	NA	NA	<1	NA	NA	NA	NA	1.08	NA	NA
MW-15	3/14/2019	< 0.002	< 0.001	0.0600	< 0.001	< 0.001	< 0.002	0.00318	<1	< 0.001	< 0.005	<0.0002	< 0.005	0.783	< 0.005	< 0.001
MW-15	9/11/2019	NA	< 0.001	0.0836	< 0.001	NA	0.00257	0.00381	<1	< 0.001	0.00845	NA	< 0.005	0.756	< 0.005	NA
MW-15	4/9/2020	< 0.004	< 0.002	0.0663	< 0.002	<0.001	< 0.002	0.00374	0.175	< 0.005	0.00213	<0.0002	< 0.005	3.26	< 0.002	<0.002

Notes:

1. Abbreviations: mg/L - milligrams per liter; NA - not analyzed; pCi/L - picocurie per liter;

APPENDIX C5 – SITE HYDROGEOLOGY AND STRATIGRAPHIC CROSS-SECTIONS OF THE SITE

CONCEPTUAL SITE MODEL AND DESCRIPTION OF SITE HYDROGEOLOGY (ASH POND AREAS)

The Zimmer Power Station (Zimmer Station) conceptual site model (CSM) and Description of Site Hydrogeology for the D Basin, the Gypsum Recycling Pond, and the Coal Pile Runoff Pond, hereinafter referred to as the 'Site', located near Moscow, Ohio are described in the following sections.

REGIONAL SETTING

The Ohio River Valley generally separates the Till Plains Section of the Central Lowlands Physiographic Province from the Lexington Plain Section of the Interior Low Plateaus Physiographic Province. The Central Lowlands Physiographic Province is characterized by plains of low relief with youthful to mature dissection developed on soil and rock deposits. The Till Plains Section is generally north of the Ohio River and is characterized by hills of low relief that are developed on nearly horizontal, Paleozoic sedimentary strata. Continental glaciation has affected most of the province so that bedrock is almost entirely concealed by glacial drift. Common valley fill material consists of coarse-grained outwash deposits, fine-grained lacustrine and overbank deposits, and glacial till. The bedrock consists of interbedded shales and limestones typical of the Cincinnatian Series.

SITE GEOLOGY

Zimmer Station is located on the relatively flat floor of the Ohio River Valley and is underlain by valley-fill glacial deposits. Glacial deposits directly beneath Zimmer Station consist of fine-grained fluvial and lacustrine deposits (clay and silt) to a maximum depth of 45 feet below the present ground surface. These deposits are underlain by coarser alluvial deposits that are composed of well-graded to poorly-graded sands having greater amounts of gravel with increasing depth. Bedrock beneath the unconsolidated sediments belongs to the Fairview and Kope formations. Depth to bedrock beneath the site varies between 60 and 90 feet below the ground surface.

Cross-sections showing the subsurface materials encountered at the Site are included in an attachment to this demonstration.

SITE HYDROGEOLOGY

The CCR groundwater monitoring system consists of the follow:

- Seven monitoring wells are installed in the uppermost aquifer and adjacent to the D Basin (MW-1, MW-8, MW-9, MW 12, MW-13, MW-14 and MW-15). The unit utilizes three background monitoring wells (MW-1, MW-8 and MW-12) as part of the CCR groundwater monitoring system.
- Four monitoring wells are installed in the uppermost aquifer and adjacent to the Gypsum Recycling Pond (MW-7A, MW-8, MW-10 and MW-11). The unit utilizes one background monitoring wells (MW-8) as part of the CCR groundwater monitoring system.
- Five monitoring wells are installed in the uppermost aquifer and adjacent to the Coal Pile Runoff Pond (MW-1, MW-3S, MW-16, MW-17 and MW-18). The unit utilizes one background monitoring wells (MW-1) as part of the CCR groundwater monitoring system.

See Monitoring Well Location Map, and Well Construction Diagrams and Drilling Logs attached to this demonstration.

Groundwater is encountered in the Ohio River valley aquifer. The aquifer consists primarily of the coarser alluvial deposits described above. The thickness of the deposits ranges from approximately 50 to 65 feet and covers much of the width of the flood plain between the river and Route 52 located to the east. Porosity of the aquifer material is likely to be on the order of 20 to 40 percent given the distribution of grain sizes. The groundwater potentiometric surface on site is encountered at depths of 25 to 50 feet below ground surface (bgs) (approximately 455 to 470 feet above mean sea level [msl]). The large variability is introduced by rising and falling river stage because of a relatively direct hydraulic connection between the riverbed and the aquifer.

The aquifer receives most of its recharge from infiltration of precipitation on the valley floor; however, secondary recharge sources include adjacent upgradient aquifers in the upland, and bank storage from the Ohio River during flood stages. Recharge to the aquifer from bank storage is periodic and short-lived, and the main movement of groundwater discharge is toward the river.

Zimmer Station withdraws water from the underlying sand and gravel aquifer through eight onsite production wells, all of which are located on the southern half of the facility. In general, each of the production wells is capable of yielding between 0.720 and 0.432 million gallons per day (mgd); however, the average daily yield is approximately 0.206 mgd.

When pumping, a localized cone of depression in the groundwater surface is created that encompasses the southern and, occasionally, the central portion of the site (AEP, November, 1986). This cone of depression induces flow from the Ohio River toward the pumping wells. The hydraulic gradient of the aquifer was calculated to be on the order of 0.0025 toward the Ohio River with a west-northwest to west southwest direction. The transmissivity of the aquifer is approximately 50,000 gallons per day per foot (gpd/ft), the hydraulic conductivity is approximately 1,000 gpd/ft² (134 ft/day), and the storage coefficient of the aquifer is 0.17 (Wm. H. Zimmer, 1983).

Material overlying the uppermost aquifer directly beneath Zimmer Station is comprised of glacial deposits consisting of fine-grained fluvial and lacustrine deposits (clay and silt) to a maximum depth of 45 feet bgs. Permeability tests conducted on in-situ cohesive material by American Electric Power Service Corporation, Civil Engineering Division in 1986 suggested values in the range of 9.7×10^{-9} to 1.4×10^{-8} cm/sec.

The lower confining unit underlying Zimmer Station is bedrock consisting of interbedded shales and limestones belonging to the Fairview and Kope formations. Depth to bedrock beneath the site varies between 60 and 90 feet bgs. These low-yielding shale and limestone formations are approximately 400- to 600-feet thick (Luft, et. al., 1973). Groundwater yields from the bedrock strata in this region are quite limited. Generally, the bedrock is not tapped for water due to its low permeability. Those wells which do tap the bedrock aquifers generally draw water from the bedding planes and fracture zones. Due to the relatively impermeable nature of the shales and limestone underlying this region, water yields are generally insufficient for domestic use. Fresh water does not typically occur at depths greater than 150 feet bgs (Wm. H. Zimmer, 1983).

REFERENCES

American Electric Power Service Corporation, Civil Engineering Division, November 1986, Geotechnical report for the WM. H. Zimmer Coal Conversion Project.

Luft, Stanley J.1 Osborne, Robert H., and Malcolm P. Weiss. Geologic Map of the Moscow Quadrangle, Ohio - Kentucky (GQ-I069). Prepared in cooperation with The Commonwealth of Kentucky, University of Kentucky, Kentucky Geological Survey, 1973.

Zimmer, William. H., 1983, Nuclear Power Station Unit 1 Environmental Report Operating License Stage, Volume 1, Section Number 245.

TEST BORING LOCATION
 CROSS SECTION LOCATION
 CCR MONITORED UNIT

CCR MONITORING WELL LOCATION

CROSS SECTION LOCATION MAP

ZIMMER D BASIN (UNIT ID: 121), ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) AND ZIMMER COAL PILE RUNOFF POND (UNIT ID: 125) ZIMMER POWER STATION MOSCOW, OHIO RAMBOLL US CORPORATION A RAMBOLL COMPANY

RAMBOLL US CORPORATION A RAMBOLL COMPANY

ZIMMER COAL PILE RUNOFF POND (UNIT ID: 125) ZIMMER POWER STATION MOSCOW, OHIO

SILT

SAND

;i//

RAMBOLL

ZIMMER D BASIN (UNIT ID:121) ZIMMER POWER STATION MOSCOW, OHIO

 A RAMBOLL COMPANY

ZIMMER GYPSUM RECYCLE POND (UNIT ID: 124) ZIMMER POWER STATION MOSCOW, OHIO

;;]]

42786

SILT

SAND

GRAVEL

APPENDIX C6 – STRUCTURAL STABILITY ASSESSMENT

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Structural Stability Assessment

For

Coal Pile Runoff Pond At Zimmer Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the Coal Pile Runoff Pond at the Zimmer Power Station meets the structural stability assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(d). The Coal Pile Runoff Pond is located near Moscow, Ohio in Clermont County, approximately 0.6 miles north of the Zimmer Power Station. The Coal Pile Runoff Pond receives leachate from the Zimmer Power Station's on-site landfill, discharge from the Chemical Metal Cleaning waste treatment tank, and pumped flows from the D Basin CCR surface impoundment and other non-CCR ponds at Zimmer Power Station.

The Coal Pile Runoff Pond is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that an initial structural stability assessment for an existing CCR surface impoundment be completed by October 17, 2016. In general, the initial structural stability assessment must document that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial structural stability assessment was conducted in accordance with the requirements of 40 CFR § 257.73(d). The owner or operator must prepare a periodic structural stability assessment every five years.

2 Initial Structural Stability Assessment

40 CFR §257.73(d)(1)

The owner or operator of the CCR unit must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein. The assessment must, at a minimum, document whether the CCR unit has been designed, constructed, operated, and maintained with [the standards in (d)(1)(i)-(vii)].

An initial structural stability assessment has been performed to document that the design, construction, operation and maintenance of the Coal Pile Runoff Pond is consistent with recognized and generally accepted good engineering practices and meets the standards in 257.73(d)(1)(i)-(vii). The results of the structural stability assessment are discussed in the following sections. Based on the assessment and its results, the design, construction, operation, and maintenance of the Coal Pile Runoff Pond were found to be consistent with recognized and generally accepted good engineering practices.

2.1 Foundations and Abutments (§257.73(d)(1)(i))

CCR unit designed, constructed, operated, and maintained with stable foundations and abutments.

The stability of the foundations was evaluated using soil data from field investigations and reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the foundations. The Coal Pile Runoff Pond is a ring dike structure and does not have abutments.

The foundation consists of medium stiff to hard clay soil, underlain by loose to very dense sand, which indicates stable foundations. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the foundation. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for Coal Pile Runoff Pond at Zimmer Power Station* (October 2016). A review of information about operations and maintenance as well as current and past performance of the dikes has determined appropriate processes are in place for continued operational performance.

Based on the conditions observed by AECOM, the Coal Pile Runoff Pond was designed and constructed with stable foundations. Any issues related to the stability of the foundation is addressed during operations and maintenance; therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(i).

2.2 Slope Protection (§257.73(d)(1)(ii))

CCR unit designed, constructed, operated, and maintained with adequate slope protection to protect against surface erosion, wave action and adverse effects of sudden drawdown.

The adequacy of slope protection was evaluated by reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM.

Based on this evaluation, adequate slope protection was designed and constructed at the Coal Pile Runoff Pond. No evidence of significant areas of erosion or wave action were observed and slopes were covered in vegetation. The Zimmer Power Station regularly maintains the slopes, including repairing observed surface erosion and addressing areas of poor vegetation growth, as required. Due to the characteristics of the outfall structure for the

2.3 Dike Compaction (§257.73(d)(1)(iii))

CCR unit designed, constructed, operated, and maintained with dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit.

The density of the dike materials was evaluated using soil data from field investigations and reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the dike over the range of expected loading conditions as defined within §257.73(e)(1).

Based on this evaluation, the dike consists of very stiff to hard clay material, which is indicative of mechanically compacted dikes. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the dike. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for Coal Pile Runoff Pond at Zimmer Power Station* (October 2016); therefore, the original design and construction of the Coal Pile Runoff Pond included sufficient dike compaction. Deficiencies related to compaction of the dikes are identified and mitigated as part of operations and maintenance, in order to maintain sufficient compaction and density of the dikes to withstand the range of loading conditions. Therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(iii).

2.4 Vegetated Slopes (§257.73(d)(1)(iv))¹

CCR unit designed, constructed, operated, and maintained with vegetated slopes of dikes and surrounding areas, except for slopes which have an alternate form or forms of slope protection.

The adequacy of slope vegetation was evaluated by reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM.

Based on this evaluation, the vegetation on the interior and exterior slopes is adequate as no substantial bare or overgrown areas were observed. Therefore, the original design and construction of the Coal Pile Runoff Pond included adequate vegetation of the dikes and surrounding areas. Adequate operational and maintenance practices are in place to regularly manage vegetation growth, including mowing and seeding any bare areas, as evidenced by the conditions observed by AECOM. Therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(iv).

¹ As modified by court order issued June 14, 2016, Utility Solid Waste Activities Group v. EPA, D.C. Cir. No. 15-1219 (order granting remand and vacatur of specific regulatory provisions).

2.5 Spillways (§257.73(d)(1)(v))

CCR unit designed, constructed, operated, and maintained with a single spillway or a combination of spillways configured as specified in [paragraph (A) and (B)]:

(A) All spillways must be either:

(1) of non-erodible construction and designed to carry sustained flows; or

(2) earth- or grass-lined and designed to carry short-term, infrequent flows at non-erosive velocities where sustained flows are not expected.

- (B) The combined capacity of all spillways must adequately manage flow during and following the peak discharge from a:
 - (1) Probable maximum flood (PMF) for a high hazard potential CCR surface impoundment; or
 - (2) 1000-year flood for a significant hazard potential CCR surface impoundment; or
 - (3) 100-year flood for a low hazard potential CCR surface impoundment.

The spillway was evaluated using design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, hydrologic and hydraulic analyses were completed to evaluate the capacity of the spillway relative to inflow estimated for the 1,000-year flood event for the significant hazard potential Coal Pile Runoff Pond. The hazard potential classification assessment was performed by Stantec in 2016 in accordance with §257.73(a)(2).

The spillway consists of two, high-density polyethylene (HDPE) pipes, which is a non-erodible material that is designed to carry sustained flows. The capacity of the spillway was evaluated using hydrologic and hydraulic analysis performed per §257.82(a). The analysis found that the spillway can adequately manage flow during peak discharge resulting from the 1,000-year storm event without overtopping of the embankments. The hydrologic and hydraulic analyses are discussed in the *CCR Rule Report: Initial Inflow Design Flood Control System Plan for Coal Pile Runoff Pond at Zimmer Power Station* (October 2016). Any issues with the spillway are repaired and debris or other obstructions are removed from the spillway during operations and maintenance, as appropriate and as evidenced by the conditions observed by AECOM. Therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(v).

2.6 Stability and Structural Integrity of Hydraulic Structures (§257.73(d)(1)(vi))

CCR unit designed, constructed, operated, and maintained with hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure.

The stability and structural integrity of the hydraulic structure penetrating the dike of the Coal Pile Runoff Pond, which includes two HDPE pipe conduits, was evaluated using design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. No other hydraulic structures are known to pass through the dike of or underlie the base of the Coal Pile Runoff Pond.

AECOM's field observations found the HDPE pipes to be free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris that may negatively affect the operation of the hydraulic structure. Operations and maintenance practices are in place to remove debris or other obstructions from the hydraulic structures, and address any deficiencies, as evidenced by conditions observed by AECOM. As a result, these procedures are appropriate for maintaining the hydraulic structures. Therefore, the Coal Pile Runoff Pond meets the requirements in §257.73(d)(1)(vi).

2.7 Downstream Slope Inundation/Stability (§257.73(d)(1)(vii))

CCR unit designed, constructed, operated, and maintained with, for CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body.

The structural stability of the downstream slopes of the Coal Pile Runoff Pond was evaluated by comparing the location of the Coal Pile Runoff Pond relative to adjacent water bodies using published Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM), aerial imagery, conditions observed in the field by AECOM, and sudden drawdown slope stability analyses.

Based on this evaluation, the Ohio River is adjacent to the western downstream slope of the Coal Pile Runoff Pond. No other downstream water bodies such as rivers, streams, or lakes are adjacent to the Coal Pile Runoff Pond. Several adjacent non-CCR surface impoundments are present, but they are not a river, stream, or lake.

A sudden drawdown slope stability analysis was performed for a cross section adjacent to the Ohio River considered critical for sudden drawdown slope stability analysis. The analysis considered drawdown of the pool in the Ohio River from a 100-year flood condition, as found from the FEMA FIRM map, to an empty pool condition, thereby evaluating both sudden drawdown and low pool conditions. The resulting factor of safety was found to satisfy the criteria listed in United States Army Corps of Engineers Engineer Manual 1110-2-1902 for drawdown from normal to empty pool, as factor of safety criteria for sudden drawdown slope stability analysis is not expressly stated as a requirement of §257.73(d)(1)(vii). Therefore, the Coal Pile Runoff Pond meets the requirements listed in §257.73(d)(1)(vii).

Certification Statement 3

CCR Unit: Zimmer Power Station; Coal Pile Runoff Pond

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Ohio, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial structural stability assessment dated October 13, 2016 was conducted in accordance with the requirements of 40 CFR § 257.73(d).

VICTIR A MODEER SR. Printed Name 10/13/10 Date Date

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Structural Stability Assessment

For

Gypsum Recycle Pond At Zimmer Power Station

This Coal Combustion Residual (CCR) Rule Report documents that the Gypsum Recycle Pond at the Zimmer Power Station is exempt from the structural stability assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(d). The Gypsum Recycle Pond is located near Moscow, Ohio in Clermont County, approximately 0.1 miles northeast of the Zimmer Power Station. The Gypsum Recycle Pond serves as a storage pond for miscellaneous CCRs from wash-down collection systems and stormwater runoff at the Zimmer Power Station.

The Gypsum Recycle Pond is an incised CCR surface impoundment, as defined in 40 CFR 257.53. Under 40 CFR §257.73(b) structural stability assessments (§257.73(d)) must be performed for an existing CCR surface impoundment that:

- 1. Has a height of five feet or more and a storage volume of 20 acre-feet or more; or
- 2. Has a height of 20 feet or more.

The Gypsum Recycle Pond does not satisfy the criteria of §257.73(b) because the incised impoundment does not have dikes. Therefore, the Gypsum Recycle Pond is not subject to the structural stability assessment requirements under §257.73(d).

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Structural Stability Assessment

For

D Basin

At Zimmer Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the D Basin at the Zimmer Power Station meets the structural stability assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(d). The D Basin is located near Moscow, Ohio in Clermont County, approximately 0.5 miles north of the Zimmer Power Station. The D Basin serves as a dewatering basin for CCR produced by the Zimmer Power Station.

The D Basin is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that an initial structural stability assessment for an existing CCR surface impoundment be completed by October 17, 2016. In general, the initial structural stability assessment must document that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial structural stability assessment was conducted in accordance with the requirements of 40 CFR § 257.73(d). The owner or operator must prepare a periodic structural stability assessment every five years.

2 Initial Structural Stability Assessment

40 CFR §257.73(d)(1)

The owner or operator of the CCR unit must conduct initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein. The assessment must, at a minimum, document whether the CCR unit has been designed, constructed, operated, and maintained with [the standards in (d)(1)(i)-(vii)].

An initial structural stability assessment has been performed to document that the design, construction, operation and maintenance of the D Basin is consistent with recognized and generally accepted good engineering practices and meets the standards in 257.73(d)(1)(i)-(vii). The results of the structural stability assessment are discussed in the following sections. Based on the assessment and its results, the design, construction, operation, and maintenance of the D Basin were found to be consistent with recognized and generally accepted good engineering practices.

2.1 Foundations and Abutments (§257.73(d)(1)(i))

CCR unit designed, constructed, operated, and maintained with stable foundations and abutments.

The stability of the foundations was evaluated using soil data from field investigations and reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the foundations. The D Basin is a ring dike structure and does not have abutments.

The foundation consists of soft to stiff alluvial soil overlying medium dense to very dense alluvial soil. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the foundation. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for D Basin at Zimmer Power Station* (October 2016). Additional slope stability analyses were performed to evaluate the effects of cyclic softening in the foundation, and were found to satisfy the criteria in §257.73(e)(1)(iv) applicable to dikes. A review of information about operations and maintenance as well as current and past performance of the dikes has determined appropriate processes are in place for continued operational performance.

Based on the conditions observed by AECOM, the D Basin was designed and constructed with stable foundations. Any issues related to the stability of the foundation is addressed during operations and maintenance; therefore, the D Basin meets the requirements in §257.73(d)(1)(i).

2.2 Slope Protection (§257.73(d)(1)(ii))

CCR unit designed, constructed, operated, and maintained with adequate slope protection to protect against surface erosion, wave action and adverse effects of sudden drawdown.

The adequacy of slope protection was evaluated by reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM.

Based on this evaluation, adequate slope protection was designed and constructed at the D Basin. No evidence of significant areas of erosion or wave action were observed. Under normal operating conditions there is no free water present within the D Basin. The interior slopes are protected vegetation and a bottom ash protection layer. The exterior slopes are protected with vegetation. The bottom ash protection layer on the interior slopes isolates

the embankment soils from surface erosion, wave action, and acts as a free-draining material that is not susceptible to the adverse effects of sudden drawdown. Therefore, the D Basin meets the requirements in §257.73(d)(1)(ii).

2.3 Dike Compaction (§257.73(d)(1)(iii))

CCR unit designed, constructed, operated, and maintained with dikes mechanically compacted to a density sufficient to withstand the range of loading conditions in the CCR unit.

The density of the dike materials was evaluated using soil data from field investigations and reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM. Additionally, slope stability analyses were performed to evaluate slip surfaces passing through the dike over the range of expected loading conditions as defined within §257.73(e)(1).

Based on this evaluation, the dike consists of medium dense to very dense material, which is indicative of mechanically compacted dikes. Slope stability analyses exceed the criteria listed in §257.73(e)(1) for slip surfaces passing through the dike. The slope stability analyses are discussed in the *CCR Rule Report: Initial Safety Factor Assessment for D Basin at Zimmer Power Station* (October 2016); therefore, the original design and construction of the D Basin included sufficient dike compaction. Deficiencies related to compaction of the dikes are identified and mitigated as part of operations and maintenance, in order to maintain sufficient compaction and density of the dikes to withstand the range of loading conditions. Therefore, the D Basin meets the requirements in §257.73(d)(1)(iii).

2.4 Vegetated Slopes (§257.73(d)(1)(iv))¹

CCR unit designed, constructed, operated, and maintained with vegetated slopes of dikes and surrounding areas, except for slopes which have an alternate form or forms of slope protection.

The adequacy of slope vegetation was evaluated by reviewing design drawings, information about operations and maintenance, and conditions observed in the field by AECOM.

Based on this evaluation, the vegetation on the exterior slopes, and vegetation where present on the interior slopes, is adequate as no substantial bare or overgrown areas were observed. Where vegetation is not present on the interior slopes, the bottom ash protection layer is used as an alternate form of slope protection, which is adequate as significant areas of erosion or wave action were not observed. Therefore, the original design and construction of the D Basin included adequate vegetation of the dikes and surrounding areas. Adequate information about operations and maintenance are in place to regularly manage vegetation growth, including mowing and seeding any bare areas, as evidenced by the conditions observed by AECOM. Therefore, the D Basin meets the requirements in §257.73(d)(1)(iv).

¹ As modified by court order issued June 14, 2016, Utility Solid Waste Activities Group v. EPA, D.C. Cir. No. 15-1219 (order granting remand and vacatur of specific regulatory provisions).

2.5 Spillways (§257.73(d)(1)(v))

CCR unit designed, constructed, operated, and maintained with a single spillway or a combination of spillways configured as specified in [paragraph (A) and (B)]:

(A) All spillways must be either:

(1) of non-erodible construction and designed to carry sustained flows; or

(2) earth- or grass-lined and designed to carry short-term, infrequent flows at non-erosive velocities where sustained flows are not expected.

- (B) The combined capacity of all spillways must adequately manage flow during and following the peak discharge from a:
 - (1) Probable maximum flood (PMF) for a high hazard potential CCR surface impoundment; or
 - (2) 1000-year flood for a significant hazard potential CCR surface impoundment; or
 - (3) 100-year flood for a low hazard potential CCR surface impoundment.

The 257.73(d)(1)(v)(A) requirements are not applicable to the D Basin at the Zimmer Power Station because a spillway is not present. However, the 257.73(d)(1)(v)(B) requirement was evaluated to determine if the D Basin meets the requirements without a spillway system present, as discussed below.

The ability of the D Basin to adequately manage flow without a spillway system was evaluated using hydrologic and hydraulic analysis performed per §257.82(a). The analysis found that the D Basin can adequately manage flow during peak discharge resulting from the 1,000-year storm event without overtopping of the embankments. The hazard potential classification assessment was performed by Stantec in 2016 in accordance with §257.73(a)(2).The hydrologic and hydraulic analyses are discussed in the *CCR Rule Report: Initial Inflow Design Flood Control System Plan for D Basin at Zimmer Power Station* (October 2016). Therefore, the D Basin meets the requirements in §257.73(d)(1)(v)(B), even though a spillway system is not present.

2.6 Stability and Structural Integrity of Hydraulic Structures (§257.73(d)(1)(vi))

CCR unit designed, constructed, operated, and maintained with hydraulic structures underlying the base of the CCR unit or passing through the dike of the CCR unit that maintain structural integrity and are free of significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, and debris which may negatively affect the operation of the hydraulic structure.

Based on an evaluation of design drawings, information about operations and maintenance, and conditions observed in the field by AECOM, no hydraulic structures are present that underlie the base or pass through the dike of the D Basin. Therefore, the §257.73(d)(1)(vi) requirements are not applicable to the D Basin.

2.7 Downstream Slope Inundation/Stability (§257.73(d)(1)(vii))

CCR unit designed, constructed, operated, and maintained with, for CCR units with downstream slopes which can be inundated by the pool of an adjacent water body, such as a river, stream or lake, downstream slopes that maintain structural stability during low pool of the adjacent water body or sudden drawdown of the adjacent water body.

The structural stability of the downstream slopes of the D Basin was evaluated by comparing the location of the D Basin relative to adjacent water bodies using published Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRM), aerial imagery, conditions observed in the field by AECOM, and sudden drawdown slope stability analyses.

Based on this evaluation, the Ohio River is adjacent to the western downstream slope of the D Basin. No other downstream water bodies are adjacent to the D Basin. The adjacent C and B Basins do not retain a pool that inundates the downstream slope of the D Basin during normal conditions.

A sudden drawdown slope stability analysis was performed at a cross-section considered critical for sudden drawdown slope stability analysis. The analysis considered drawdown of the pool in the Ohio River from a 100-year flood condition, as found from the FEMA FIRM map, to an empty pool condition, thereby evaluating both

sudden drawdown and low pool conditions. The resulting factor of safety was found to satisfy the criteria listed in United States Army Corps of Engineers Engineer Manual 1110-2-1902 for drawdown from normal to low pool, as factor of safety criteria for sudden drawdown slope stability analysis is not expressly stated as a requirement of §257.73(d)(1)(vii). Therefore, the D Basin meets the requirements listed in §257.73(d)(1)(vii).

Certification Statement 3

CCR Unit: Zimmer Power Station; D Basin

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Ohio, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial structural stability assessment dated October 13, 2016 was conducted in accordance with the requirements of 40 CFR § 257.73(d).

VICTOR A MODELER SR. Printed Name

APPENDIX C7 – SAFETY FACTOR ASSESSMENT

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment

For

Coal Pile Runoff Pond At Zimmer Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the Coal Pile Runoff Pond at the Zimmer Power Station meets the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The Coal Pile Runoff Pond is located near Moscow, Ohio in Clermont County, approximately 0.6 miles north of the Zimmer Power Station. The Coal Pile Runoff Pond receives leachate from the Zimmer Power Station's on-site landfill, discharge from the Chemical Metal Cleaning waste treatment tank, and pumped flows from the D Basin CCR surface impoundment and other non-CCR ponds at Zimmer Power Station.

The Coal Pile Runoff Pond is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that the initial safety factor assessment for an existing CCR surface impoundment be completed by October 17, 2016.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial safety factor assessment meets the requirements of 40 CFR § 257.73(e). The owner or operator must prepare a safety factor assessment every five years.

2 Initial Safety Factor Assessment

40 CFR §257.73(e)(1)

The owner or operator must conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

(i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.

(ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

(iii) The calculated seismic factor of safety must equal or exceed 1.00.

(iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

A geotechnical investigation program and stability analyses were performed to evaluate the design, performance, and condition of the earthen dikes of the Coal Pile Runoff Pond. The exploration consisted of hollow-stem auger borings and laboratory program including strength and index testing. Data collected from the geotechnical investigation, available design drawings, construction records, inspection reports, previous engineering investigations, and other pertinent historic documents were utilized to perform the safety factor assessment and geotechnical analyses.

In general, the subsurface conditions at the Coal Pile Runoff Pond consist of very stiff to hard clay embankment fill underlain by medium stiff to hard alluvial clay. The alluvial clay layer is underlain by a layer of medium dense to very dense sand and gravel extending to bedrock. Phreatic water is within the foundation soils of the Coal Pile Runoff Pond.

Three (3) representative cross sections were analyzed using limit equilibrium slope stability analysis software to evaluate stability of the perimeter dike system and foundations. The cross sections were located to represent critical surface geometry, subsurface stratigraphy, and phreatic conditions across the site. Each cross section was evaluated for each of the loading conditions stipulated in §257.73(e)(1).

The Soils Susceptible to Liquefaction loading condition, §257.73(e)(1)(iv), was not evaluated because a liquefaction susceptibility evaluation did not find soils susceptible to liquefaction within the Coal Pile Runoff Pond dikes. As a result, this loading condition is not applicable to the Coal Pile Runoff Pond.

Results of the Initial Safety Factor Assessments, for the critical cross-section for each loading condition (i.e. the lowest calculated factor of safety out of the cross sections analyzed for each condition), are listed in **Table 1**.

Loading Conditions	§257.73(e)(1) Subsection	Minimum Factor of Safety	Calculated Factor of Safety
Maximum Storage Pool Loading	(i)	1.50	2.28
Maximum Surcharge Pool Loading	(ii)	1.40	2.28
Seismic	(iii)	1.00	1.60
Soils Susceptible to Liquefaction	(iv)	1.20	Not Applicable

 Table 1 – Summary of Initial Safety Factor Assessments

Based on this evaluation, the Coal Pile Runoff Pond meets the requirements in §257.73(e)(1).
3 **Certification Statement**

CCR Unit: Zimmer Power Station; Coal Pile Runoff Pond

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Ohio, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial safety factor assessment dated October 12, 2016 meets the requirements of 40 CFR §257.73(e).

VICTOR A MODEER SR. Printed Name Date

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment

For

Gypsum Recycle Pond At Zimmer Power Station

This Coal Combustion Residual (CCR) Rule Report documents that the Gypsum Recycle Pond at the Zimmer Power Station is exempt from the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The Gypsum Recycle Pond is located near Moscow, Ohio in Clermont County, approximately 0.1 miles northeast of the Zimmer Power Station. The Gypsum Recycle Pond serves as a storage pond for miscellaneous CCRs from wash-down collection systems and stormwater runoff at the Zimmer Power Station.

The Gypsum Recycle Pond is an incised CCR surface impoundment as defined by 40 CFR 257.53. Under 40 CFR §257.73(b), a safety factor assessment (§257.73(e)) must be performed for an existing CCR surface impoundment that:

- 1. Has a height of five feet or more and a storage volume of 20 acre-feet or more; or
- 2. Has a height of 20 feet or more.

The Gypsum Recycle Pond does not satisfy the criteria of §257.73(b) because the incised impoundment does not have dikes. Therefore, the Gypsum Recycle Pond is not subject to safety factor assessment requirements under §257.73(e).

Submitted to Zimmer Power Station 1781 US Route 52 Moscow, OH 45153 Submitted by AECOM 1001 Highlands Plaza Drive West Suite 300 St. Louis, MO 63110

October 2016

CCR Rule Report: Initial Safety Factor Assessment

For

D Basin

At Zimmer Power Station

1 Introduction

This Coal Combustion Residual (CCR) Rule Report documents that the D Basin at the Zimmer Power Station meets the safety factor assessment requirements specified in 40 Code of Federal Regulations (CFR) §257.73(e). The D Basin is located near Moscow, Ohio in Clermont County, approximately 0.5 miles north of the Zimmer Power Station. The D Basin serves as a dewatering basin for CCR produced by the Zimmer Power Station.

The D Basin is an existing CCR surface impoundment as defined by 40 CFR §257.53. The CCR Rule requires that the initial safety factor assessment for an existing CCR surface impoundment be completed by October 17, 2016.

The owner or operator of the CCR unit must obtain a certification from a qualified professional engineer stating that the initial safety factor assessment meets the requirements of 40 CFR § 257.73(e). The owner or operator must prepare a safety factor assessment every five years.

2 Initial Safety Factor Assessment

40 CFR §257.73(e)(1)

The owner or operator must conduct initial and periodic safety factor assessments for each CCR unit and document whether the calculated factors of safety for each CCR unit achieve the minimum safety factors specified in (e)(1)(i) through (iv) of this section for the critical cross section of the embankment. The critical cross section is the cross section anticipated to be the most susceptible of all cross sections to structural failure based on appropriate engineering considerations, including loading conditions. The safety factor assessments must be supported by appropriate engineering calculations.

(i) The calculated static factor of safety under the long-term, maximum storage pool loading condition must equal or exceed 1.50.

(ii) The calculated static factor of safety under the maximum surcharge pool loading condition must equal or exceed 1.40.

(iii) The calculated seismic factor of safety must equal or exceed 1.00.

(iv) For dikes constructed of soils that have susceptibility to liquefaction, the calculated liquefaction factor of safety must equal or exceed 1.20.

A geotechnical investigation program and stability analyses were performed to evaluate the design, performance, and condition of the earthen dikes of the D Basin. The exploration consisted of hollow-stem auger borings and laboratory program including strength, hydraulic conductivity, and index testing. Data collected from the geotechnical investigation, available design drawings, construction records, inspection reports, previous engineering investigations, and other pertinent historic documents were utilized to perform the safety factor assessment and geotechnical analyses.

In general, the subsurface conditions at the D Basin consist of medium dense to dense sand overlying soft to stiff alluvial clay, which in turn overlies medium dense to very dense sand and gravel. Phreatic water is within the foundation of the D Basin.

A critical cross section was analyzed using limit equilibrium slope stability analysis software to evaluate stability of the perimeter dike system and foundations. The cross section was located at the maximum embankment height for the D Basin. Due to the relatively short height of the D Basin embankments and uniform slope orientations, subsurface stratigraphy, and phreatic conditions, a cross section at the maximum embankment height is sufficient to represent the critical cross section. The cross section was evaluated for each of the loading conditions stipulated in §257.73(e)(1).

The Soils Susceptible to Liquefaction loading condition, §257.73(e)(1)(iv), was not evaluated because a liquefaction susceptibility evaluation did not find soils susceptible to liquefaction within the D Basin dikes. As a result, this loading condition is not applicable to the D Basin.

Results of the Initial Safety Factor Assessments are listed in Table 1.

Loading Conditions	§257.73(e)(1) Subsection	Minimum Factor of Safety	Calculated Factor of Safety
Maximum Storage Pool Loading	(i)	1.50	3.88
Maximum Surcharge Pool Loading	(ii)	1.40	2.63
Seismic	(iii)	1.00	1.79
Soils Susceptible to Liquefaction	(iv)	1.20	Not Applicable

 Table 1 – Summary of Initial Safety Factor Assessments

Based on this evaluation, the D Basin meets the requirements in §257.73(e)(1).

3 **Certification Statement**

CCR Unit: Zimmer Power Station; D Basin

I, Victor A. Modeer, being a Registered Professional Engineer in good standing in the State of Ohio, do hereby certify, to the best of my knowledge, information, and belief that the information contained in this CCR Rule Report, and the underlying data in the operating record, has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the initial safety factor assessment dated October 13, 2016 meets the requirements of 40 CFR §257.73(e).

VICTIR A MODEER SR. Printed Name

Date

CREATE AMAZING.

Burns & McDonnell World Headquarters 9400 Ward Parkway Kansas City, MO 64114 O 816-333-9400 F 816-333-3690 www.burnsmcd.com